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Abstract. The capability of a multi-directional fixed smeared crack constitutive model to simulate the
flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The
constitutive model is implemented in a computer program based on the finite element method, where the
FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized
into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A
stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal
crack component. The in-plane shear crack component is obtained using the concept of shear retention
factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening
diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase
of the corresponding shear strain components, after crack initiation. With this relatively simple approach,
accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To
assess the predictive performance of the model, a punching experimental test of a module of a façade
panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The
influence of some parameters defining the softening diagrams is discussed.

Keywords: smeared crack model; punching; shear softening diagram; material nonlinear analysis; steel
fiber reinforced self-compacting concrete; inverse analysis.

1. Introduction

The Reissner Mindlin theory for shell structures is commonly used to predict the behavior of

laminar concrete structures up to failure (Barros and Figueiras 2001). The thickness of the laminar

structure is discretized in layers that are assumed subjected to a plane stress state. The use of laws

to simulate the nonlinear behavior, after crack initiation, for the in-plane fracture modes is appropriate in

most cases, and the deformational response of the structure for load configurations inducing flexural

failure modes can be predicted with sufficient accuracy. However, the simulation of laminar

structures failing in punching is a much more complex task, being the treatment of the out-of-plane

shear components of paramount importance. In the present work, in order to explore the use of a
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simple approach to simulate the material nonlinear behavior of concrete laminar structures failing in

punching, a softening law is proposed to model both out-of-plane shear components. This crack

constitutive model has been implemented in the FEMIX computer program, which is based on the

finite element method (Sena-Cruz et al. 2007). Since the shell model only admits cracks that are

orthogonal to its middle surface, the inclined cracks that are observed in the experimental punching

tests cannot be accurately predicted. For this purpose a much more complex and time-consuming

general 3D crack constitutive model must be used (Barzegar and Maddipudi 1997). 

Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively recent cement-based

material that combines the benefits of the self-compacting concrete technology (Okamura 1997) with the

advantages of the addition of fibers to a brittle cementitious matrix (Pereira 2006). The developed

SFRSCC was used to manufacture the lightweight panel system schematically represented in Fig. 1,

which can be applied in building façades (Barros et al. 2005a). The mix composition of the

SFRSCC used to manufacture the panel is presented in Table 1. In the composition of the SFRSCC,

30 kg/m3 of hooked ends steel fibers with a length (lf) of 60 mm, a diameter (df) of 0.75 mm, an

aspect ratio (lf / df) of 80 and a yield stress of 1100 MPa were used. At seven days the average value

of the compressive strength and modulus of elasticity of this SFRSCC was 52 MPa and 31 GPa,

respectively. The flexural strength of this type of structural elements is a key aspect in their design,

since, in general, the bending moments of the wind load combination are an important factor in the

Fig. 1 Concept of a lightweight steel fiber reinforced self-compacting concrete panel (dimensions in mm)

Table 1  Composition for 1 m3 of SFRSCC including 30 kg/m3 of fibers

Paste total 
volume

(%)

Cement
CEM I 42.5R 

(kg)

Limestone 
filler
(kg)

Water
(dm3)

Super-
plasticizer* 

(dm3)

Fine sand 
(kg)

Coarse sand 
(kg)

Crushed 
aggregates 

(kg)

0.34 364.28 312.24 93.67 6.94 108.59 723.96 669.28

*Third generation based on polycarboxilates (Glenium® 77SCC)



Crack constitutive model for the prediction of punching failure modes 737

design process of the panel. To assess the panel flexural behavior, representative modules of the

SFRSCC panel system were tested, being the details of the experimental program described

elsewhere (Barros et al. 2007). The punching resistance is also a key aspect in the design of this

type of panel, since its lightweight zones consist of a thin layer that is only 30 mm thick. To

evaluate the punching resistance of these zones, representative modules of the panel system are

submitted to a load configuration that implies the occurrence of this type of failure mode (Barros et

al. 2005a, Barros et al. 2007). The results obtained in one of these tests were compared with the

numerical simulations in order to assess the predictive performance of the developed model. Several

numerical simulations are carried out to assess the influence of some parameters that define the

softening diagrams. The objective of these simulations is to understand how each parameter affects

the response of a laminar FRC structure failing in punching. The influence of the in-plane mesh and

through-thickness refinement of the simulated structure is also analyzed.

The possibility of defining the fracture parameters that characterize the fracture mode I strain-

softening diagram by performing an inverse analysis (IA) (Barros et al. 2005b) is also discussed.

The IA is based on the results obtained in three point notched beam bending tests carried out

according to the RILEM TC 162-TDF recommendations (Vandewalle et al. 2002).

2. Crack constitutive model

2.1 Introduction

Presently, several finite element approaches are available to analyze the behavior of complex

structures subject to arbitrary loads. The most recent ones are capable of modeling the behavior of

concrete structures presenting brittle failure modes, and accurately predict crack formation and

progression. Discrete cohesive fracture models (discrete) with fragmentation algorithms, strong

discontinuity approaches (continuum) with the embedded discontinuities method and the extended

finite element method are examples of advanced methodologies that, together with powerful mesh

refinement algorithms, reveal great efficiency in modeling the concrete fracture initiation and

propagation (Yu et al. 2007). Alternative methods are based on damage models (de Borst and

Gutiérrez 1999), smeared crack models (Bazant and Oh 1983) and microplane models (Bazant

1984). These methods are less precise to predict the local phenomena related to crack propagation,

but from the computational effectiveness and the assessment of the global behavior of a concrete

structure point-of-views, are more appropriate to analyze complex structures with a large number of

degrees of freedom. As shown by de Borst (2002), “fixed and rotating smeared crack models, but

also microplane models, can be conceived as a special case of (anisotropic) damage models”, these

three FEM-based solutions are closely related and produce similar results. Taking into account the

main characteristics of all these approaches, the multi-directional fixed smeared crack model was

selected and implemented in the scope of the present research, since it allows for the analysis of

large scale SFRSCC structures (de Borst 1987, Rots 1988, Dahlblom and Ottosen 1990), as long as

an appropriate constitutive law is used to model the SFRSCC post-cracking behavior.

2.2 Formulation

In the context of finite element material nonlinear behavior of concrete shell structures, the
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developed crack constitutive model is implemented under the framework of the Reissner-Mindlin

theory adapted to the case of layered shells. The description of the formulation is restricted to the

case of cracked concrete, for a selected concrete layer, and at the domain of an integration point

(IP) of a finite element. According to the adopted constitutive law, stresses and strains are related

by the following equation

(1)

where  and  are the vectors of the incremental

stress and incremental strain in-plane components, while  and  are the

vectors of the total stress and total out-of-plane shear strain components.

Due to the decomposition of the total strain into an elastic concrete part and a crack part

( ), in Eq. (1) the in-plane cracked concrete constitutive matrix, , is obtained

with the following equation (Sena-Cruz 2004)

(2)

where  is the constitutive matrix of concrete with a linear and elastic behavior

(3)

where E and ν are the elasticity modulus and the Poisson’s ratio of concrete, respectively. In Eq.

(2),  is the matrix that transforms the stress components from the coordinate system of the finite

element to the local crack coordinate system

(4)

and  is the crack constitutive matrix

(5)

In Eq. (4), θ is the angle between x1 and n (see Fig. 2). In Eq. (5),  and  represent,

respectively, the constitutive components relative to the crack opening mode I (normal) and mode II

(in-plane shear).

The crack opening propagation is simulated with the trilinear diagram represented in Fig. 3, which

is defined by the parameters αi and ξi, relating stress with strain at the transitions between the linear

segments that compose this diagram. The ultimate crack strain, , is defined as a function of the

parameters αi and ξi, the fracture energy, , the tensile strength, , and the crack bandwidth, lb,

as follows (Sena-Cruz 2004)

(6)
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where  and .

The fracture mode II modulus, , is obtained with

(7)

where G
c
 is the concrete elastic shear modulus and β is the shear retention factor. The parameter β

is defined as a constant value or as a function of the current crack normal strain, , and of the

ultimate crack normal strain, , as follows

(8)

When p1 is unitary, a linear decrease of β with the increase of  is assumed. Larger values of the
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Fig. 2 Stress components, relative displacements and local coordinate system of the crack

Fig. 3 Trilinear stress-strain diagram to simulate the fracture mode I crack propagation of SFRSCC
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exponent p1 correspond to a more pronounced decrease of the parameter β, in order to simulate a higher

in-plane shear stress degradation with the crack opening process (Barros et al. 2004). A softening constitutive

law to model the in-plane crack shear stress transfer has also been implemented in the FEMIX code, but its

adoption as an alternative to the shear retention concept does not contribute to an increase of the accuracy

of the numerical simulations, and causes difficulties in the convergence of the Newton-Raphson procedure.

The definition of the out-of-plane (OP) constitutive matrix,  in Eq. (1), is based on the

diagram represented in Fig. 4. When the concrete associated with the IP changes from uncracked to

cracked state, the out-of-plane shear stresses are stored for later use and each out-of-plane shear

stress-strain relation (  and ) follows the softening law depicted in Fig. 4. Therefore,

the   matrix is defined by

(9)

where

(10)

in accordance with the secant approach shown in Fig. 4. Each peak shear strain is calculated using

the stored peak shear stress at crack initiation and G
c

(11)

Each out-of-plane ultimate shear strain, , is defined as a function of the out-of-plane peak

shear strain, , the out-of-plane shear strength, , the mode III (out-of-plane) fracture energy,

, and the crack bandwidth, lb, as follows

Ds

crco

τ23 γ23– τ31 γ31–

Ds

crco

Ds

crco DIII sec,

23
0

0 DIII sec,

31

=

DIII sec,

23 τ23 max,

OP

γ23 max,

OP
--------------  DIII sec,

31
,

τ31 max,

OP

γ31 max,

OP
--------------= =

γ23 p,

OP τ23 p,

OP

Gc

---------  γ31 p,

OP
,

τ31 p,

OP

Gc

---------= =

γu
OP

γp
OP

τp
OP

Gf

III

Fig. 4 Diagram to simulate the relationship between the out-of-plane (OP) shear stress and shear strain
components



Crack constitutive model for the prediction of punching failure modes 741

(12)

The present approach assumes that the crack bandwidth used to assure mesh independence when

modeling fracture mode I can also be adopted in the out-of-plane fracture process.

3. Evaluation of the mode I fracture properties by inverse analysis

This section describes the inverse analysis (IA) methodology adopted to evaluate the fracture

mode I parameters of the SFRSCC used in the panel prototype that was experimentally tested and

numerically simulated. Detailed information about this IA can be found elsewhere (Barros et al.

2005b, Sena-Cruz et al. 2004).

As already mentioned, in the implemented smeared crack constitutive model the post-cracking

behavior of SFRSCC under tension is described by a trilinear stress-strain softening diagram (Fig.

3). This function is defined by a set of fracture parameters (αi, ξi, , fct and lb), being the accuracy

of the FEM modeling largely dependent on the values that are assigned to these parameters. In this

context, the experimental behavior of an element failed in bending may be predicted by a FEM

model, as long as the correct values of the material fracture parameters are introduced in the

constitutive model. The adopted strategy consists in the evaluation of the ξ1, αi and  parameters

that define the shape of the trilinear  constitutive law, based on the minimization of the error

parameter

(13)

where  and  are the areas beneath the experimental and numerical load-deflection curves

corresponding to a three point notched beam bending test (Sena-Cruz et al. 2004). The experimental

curve corresponds to the average results observed in prismatic SFRSCC notched specimens, tested

according to the RILEM TC 162-TDF recommendations at the age of 7 days (Vandewalle et al.

2002), while the numerical curve consists of the results obtained by FEM analysis, where the

specimen, loading and support conditions are simulated in agreement with the experimental flexural
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test setup (Fig. 5(a)). In this context, the specimen is modeled with a mesh of 8 node serendipity

plane stress finite elements. The Gauss-Legendre integration scheme with 2×2 integration points is

used in all elements, with the exception of the elements at the specimen symmetry axis, where 1×2

integration points are used. With this particular integration point layout, the numerical results have a

better agreement with the experimental observations, since a vertical crack may develop along the

symmetry axis. Linear elastic material behavior is assumed in all the elements, with the exception

of those above the notch, along the symmetry axis. In this region an elastic-cracked material model

in tension is adopted. The crack bandwidth, lb, is assumed to be equal to 5 mm, being this value

coincident with the width of the notch and of the elements located above it.

In Fig. 5(b), the results experimentally obtained in the flexural tests are compared with the

numerical results. The curve of the numerical simulation, obtained with the optimized fracture parameters,

is not perfectly coincident with the experimental curve, suggesting that more parameters should be

considered in order to obtain a better fitting. The values of the fracture parameters ξi, αi and 

that lead to the numerical results represented in Fig. 5(b) are listed in Table 2.

4. Numerical simulation

4.1 Introduction

The punching test of a module of the developed SFRSCC lightweight panel is used to assess the

Gf

I

Table 2 Values of the parameters of the constitutive model used in the numerical simulations of the punching test

Poisson’s ratio ν = 0.15

Initial Young’s modulus Ec = 31000.0 N/mm2

Compressive strength fc = 52.0 N/mm2

Trilinear tension softening diagram of SFRSCC (used in the
numerical simulations of section 4.2. Parameters values
obtained from inverse analysis)

Trilinear tension softening diagram of SFRSCC
(used in the numerical simulations of section 4.3.
Parameter values obtained by modifying in  the ones
obtained from inverse analysis)

(± - depends on the numerical simulation)

Fracture energy (mode III) used in the out-of-plane shear 
stress-strain diagram

from  to 
(depends on the numerical simulation)

Parameter defining the mode I fracture energy available to
the new crack

p2 = 2

Shear retention factor Exponential (p1 = 2)

Crack bandwidth Square root of the area of the integration point

Threshold angle αth = 30o

 (see Fig. 3)
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predictive performance of the proposed multi-directional fixed smeared crack model. The test layout

and the test setup are represented in Fig. 6. More details about the corresponding experimental

program can be found elsewhere (Barros et al. 2007).

The influence of mesh refinement and some model parameters in the results of the numerical

simulations is assessed and discussed in this section, namely: the values adopted for the fracture

mode I parameters used to define the trilinear diagram and the values used to define the out-of-

plane shear stress-strain diagram.

4.2 Analysis based on the values obtained from the IA.

4.2.1 Influence of the out-of-plane shear softening diagram

The results of the numerical simulations are compared with the experimental data obtained in the

punching test of the panel module. The finite element idealization, load and support conditions used

in the numerical simulations of the punching test are shown in Fig. 7(a). Only one quarter of the

Fig. 6  (a) Test panel module and (b) test setup (dimensions in mm)

Fig. 7 (a) Geometry, mesh, load and support conditions used in the numerical simulation of the punching test
- Coarse Mesh (CM) and (b) properties of the layered cross section
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panel is used in the simulations, due to double symmetry. The mesh is composed of 6×6 eight-node

serendipity plane shell elements. The elements are divided into 11 layers, each one being 10 mm

thick. Since the panel has lightweight zones (shaded elements in Fig. 7(a)), materialized by the

suppression of 80 mm of concrete in the central zone, null stiffness is assigned to the 8 bottom

layers of the corresponding finite elements (see Fig. 7(b)). The material of the remaining three

layers has an elastic-cracked behavior, as described in Section 2.2. This model is also used in the

elements located outside the central lightweight zone.

A trial-and-error procedure is required to estimate reasonable values for the out-of-plane components of

the elastic-cracked constitutive matrix, , since their experimental evaluation is quite complex

and beyond the scope of the present work. The out-of-plane shear fracture energy that leads to the

best agreement with the experimental results of the punching tests, , is determined

with this procedure. The values of the mode I fracture parameters that take part in the in-plane

elastic-cracked constitutive matrix for concrete, , are obtained by IA, as described in Section 3.

In Fig. 8 the responses obtained with the numerical model are compared with the experimental

results. A good agreement can be observed up to a deflection of 2.5 mm. For larger deflections, an

overestimation of the load carrying capacity of the prototype panel occurs when a linear elastic

behavior is assumed for the out-of-plane shear components. At a deflection of about 3 mm the

experimental curve suddenly falls, indicating the failure of the panel by punching, as visually

confirmed in the experimental test. This load decay that is not reproduced when assuming a linear

elastic behavior for the out-of-plane shear components is, however, well captured when the bilinear

diagram represented in Fig. 4 is used to model the softening behavior of the out-of-plane shear

components, with , and assuming a crack bandwidth, lb, equal to the square root of

the area associated with the corresponding IP. The abrupt load decay from approximately 41 kN to

20 kN, which is observed in the experimental test, is accurately simulated by the numerical model,

as well as the subsequent extended stage of residual load carrying capacity exhibiting a very small

load decay.

Up to a 10 kN load all the curves depicted in Fig. 8 are practically coincident. Afterwards, the

straight line that represents the response assuming a linear-elastic behavior no longer follows the

curves that correspond to the experimental test and to the numerical analysis with material nonlinear
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Fig. 8 Relationship between load and deflection at the center of the test panel
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model. These results suggest that some cracks start to form at a very early stage of the experimental

test. The nonlinear numerical model accurately captures the formation of bending cracks at the top

surface (see Fig. 9(a)), in agreement with the experimentally observed crack pattern. Fig. 9(b)

shows the crack pattern at the top surface observed at the end of the test sequence. The numerical

model also indicates the formation of bending cracks at the bottom surface, in the lightweight zone.

These cracks initiate at the center of the panel, beneath the loaded area, and then progress to the

corners of the lightweight zone, showing some similarities with the classical yield lines formed in

square concrete slabs failing by flexure. These cracks can also be observed in the experimental test

(Pereira 2006).

In conclusion, the results indicate that flexure mechanisms prevail in the deformational behavior

up to a deflection of approximately 2.5 mm. For larger deflections, the punching failure mechanisms

Fig. 9 Punching test simulation: (a) top surface cracks predicted by the numerical model (using a FEM mesh
with 12×12 eight-node serendipity plane shell elements) and (b) photograph showing the cracks at the
top surface of the panel, at the end of the test sequence

Fig. 10 Influence of , using the in-plane coarse mesh and 3 layers in the lightweight zone, on the
numerical relationship between load and deflection at the center of the test panel

Gf

III
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start to assume a greater relevance, and the overestimation of the panel out-of-plane rigidity

components, when linear out-of-plane shear behavior is assumed, leads to a divergence between the

numerical model and the experimental observations. With the adoption of a softening law for the

out-of-plane shear components, the numerical model becomes much more accurate in the prediction

of the complete behavior of the panel failing in punching, capturing the sudden load decay

associated with punching failure mechanisms. 

As already mentioned, the selection of a value for  has no experimental support. In order to

analyze its influence on the results of the numerical simulation using a softening law for both out-

of-plane components, a parametric analysis is carried out consisting in the variation of its value

from 1.0 to 5.0 N/mm. The results depicted in Fig. 10 show that a value of  leads

to a perfect prediction of the abrupt load decay experimentally observed at a deflection of about 3

mm. Increasing or decreasing the value of  implies the occurrence of the abrupt load decay at a

larger or smaller deflection, respectively. The conclusion of this study is that, independently of the

value of , when using the model described in this work, it is essential to use a softening law for

the out-of-plane shear components in order to simulate the sudden load decay observed in the

punching test.

4.2.2 Influence of the through-thickness refinement of the panel

In this section, the influence of through-thickness refinement of the panel on the load-deflection

relationship is analyzed. The parameters used to simulate the fracture mode I and the out-of-plane

shear softening diagram are those that have best fitted the experimental results, according to the

strategy described in the previous section.

For this purpose, the following two refinements are considered: 6 layers in the lightweight zone

and 22 layers in the remaining parts; 10 layers in the lightweight zone and 26 layers in the other

zones.

In Fig. 11 the load-deflection relationships of these numerical simulations are compared with the

experimental one. In the legend of this figure, CM_jL represents the relationship obtained from the

simulation whose lightweight zone was discretized in j layers. It can be observed that by increasing

Gf

III

Gf

III
3.0N mm⁄=

Gf

III

Gf

III

Fig. 11 Influence of the number of layers discretizing the thickness of the panel (the number indicated is
restricted to the lightweight zone of the panel)
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the number of layers from 3 to 6 in the lightweight zone, the maximum load increases in about 17%

and the stiffness corresponding to the branch between crack initiation and peak load also increases.

This behavior can be justified by the fact that the flexural stiffness of the layers is not taken into

account in the layered approach adopted to simulate the stiffness of Mindlin shell finite elements,

when a material nonlinear analysis is performed. Therefore, the larger the number of layers

discretizing the element, the higher the flexural stiffness of the element is, resulting in a smaller

deformability of the panel and a higher load carrying capacity. However, Fig. 11 also shows that

when the number of layers increases from 6 to 10, only a marginal increase of the maximum load is

visible, which indicates that the increase ratio of the flexural stiffness and load carrying capacity of

the layered Mindlin-shell element decreases with the number of layers. 

It is also interesting to observe that the deflection at the abrupt load decay, as well as the residual

load carrying capacity of the panel are very similar in all three numerical analysis. 

4.2.3 Influence of the in-plane mesh refinement of the panel

In order to assess the influence of the in-plane mesh refinement on the load-deflection relationship, an

analysis with the refined mesh (RM) represented in Fig. 12 is carried out. Eight-node serendipity

plane shell elements are used, with 10 layers in the lightweight zone and 26 layers in the other

zones.

The load-deflection relationship for the RM is represented in Fig. 13, which is compared with the

one obtained with the previous coarse mesh (CM), and with the one experimentally registered. As

expected, the deformability of the panel increases with the mesh refinement, causing the abrupt load

decay to occur for a higher deflection (3.3 mm). Due to the higher flexibility of the panel when

performing the analysis with the RM, a decrease of about 5% in terms of load carrying capacity

occurs. Therefore, the shape of the load-deflection (F-u) curve for the RM is approximately the

result of the rotation of the F-u curve for the CM in turn of the point that corresponds to the crack

initiation.

Fig. 12 Geometry, mesh, load and support
conditions used in the numerical
simulation of the punching test-
Refined Mesh (RM)

Fig. 13 Influence of the in-plane refinement on the numerical
relationship between load and deflection at the center
of the test panel
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With the increase of the number of finite elements (and number of integration points), the concrete in

cracked status and the corresponding consumed mode I fracture energy also increase. This can be a

possible justification for this more deformable response of the in-plane RM numerical simulation.

4.2.4 Influence of the fracture energy ( ) used in the out-of-plane shear softening diagram

To assess the influence of the fracture energy used to define the out-of-plane shear softening

diagram, , on the load-deflection relationship, its value is varied between 1.0 N/mm and 5.0 N/

mm. In these analyses the in-plane CM and the RM are used, with 10 layers discretizing the

thickness of the panel in the lightweight zone. The obtained numerical curves are represented in

Figs. 14(a) and 14(b), respectively. It is observed that in the RM the  value mainly affects the

residual load carrying capacity after the abrupt load decay. When using the CM, the value attributed

to  not only affects the residual load carrying capacity but also influences the value of the

deflection corresponding to the abrupt load decay. This influence, however, is less pronounced than

when using an in-plane CM with 3 layers discretizing the thickness of the panel in the lightweight

zone (see Fig. 10). Therefore it can be concluded that when a RM is used, suitable predictions can

be obtained with , but further research needs to be carried out for a more reliable

estimation of .

Figs. 15(a) and 15(b) show the consumed out-of-plane fracture energy ( ) up to a deflection of

3.5 mm for the in-plane CM and RM, respectively. In each integration point, this consumed fracture

energy receives the contribution of the two out-of-plane shear components in all layers discretizing the

thickness of the panel, and can be regarded as an indicator of damaged due to punching failure mode.

It can be observed that the punching failure pattern is well predicted when using the RM. When using

the in-plane CM refinement the shear failure bandwidth is larger, which justifies the higher sensitivity

of the deflection corresponding to the abrupt load decay to the adopted  value (Fig. 14(a)).

4.3 Influence of the parameters that define the fracture mode I

In order to assess the influence of the parameters that define the fracture mode I constitutive law

(Fig. 3) on the load-deflection relationship predicted by the numerical model, the values of these
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Fig. 14 (a) Influence of  on the numerical relationship between load and deflection at the center of the
panel when using the in-plane coarse mesh and 10 layers in the lightweight zone
(b) Influence of     on the numerical relationship between load and deflection at the center of the
panel when using the in plane refined mesh and 10 layers in the lightweight zone
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parameters are decreased and increased by 50% relatively to those obtained by IA. The crack stress

vs. crack strain ( ) for these analyses and the corresponding load-deflection relationships are

depicted in Figs. 16 to 20. All these numerical analyses were performed with the refined mesh and

using 10 layers for the discretization of the thickness of the lightweight part of the panel. From the

analysis of these graphs it can be concluded that the inclination of the first branch of the 

diagram (  in Fig. 3) governs the point corresponding to the first drop in the load-deflection

relationship. In fact, the less abrupt is this branch the higher is the load of this point. In

consequence, the load carrying capacity of the panel is quite sensible to the slope of this branch.

Direct tensile tests with SFRSCC similar to the one used in the tested panels showed, in fact, an

abrupt stress decay immediately after crack formation. Fig. 17(b) evidences that the numerically

predicted load carrying capacity of the panel is quite dependent on the α1 parameter, since a
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Fig. 15 (a) Representation of the consumed out-of-plane fracture energy, , when using the in-plane coarse
mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm
(b) Representation of the consumed out of plane fracture energy, , when using the in plane
refined mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm.
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Fig. 16 Influence of the ξ1 parameter: (a) trilinear softening diagrams and (b) relationship between load and
deflection at the center of the test panel
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pronounced softening and a significant hardening deflection are estimated when a value of α1

smaller or larger than the one obtained by IA is used (Fig. 17(a)). The higher strength  of

the second branch of , when adopting higher values for the α1 parameter (Fig. 17(a)), also

contributes to increase both the load carrying capacity of the panel and the deflection corresponding

to the punching failure. However, Fig. 19 reveals that the strength  corresponding to the
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Fig. 17 Influence of the α1 parameter: (a) trilinear softening diagrams and (b) relationship between load and
deflection at the center of the test panel

Fig. 18 Influence of the ξ2 parameter: (a) trilinear softening diagrams and (b) relationship between load and
deflection at the center of the test panel

Fig. 19 Influence of the α2 parameter: (a) trilinear softening diagrams and (b) relationship between load and
deflection at the center of the test panel
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first branch of  diagram has a much higher influence on the load carrying capacity of the

panel than the strength  of the second branch. Nevertheless, Figs. 19 and 20 also

demonstrate that the slope of the load-deflection branch before the punching failure grows with the

value of  (Fig. 3). Finally, the decrease of the fracture energy is mainly reflected on the point

corresponding to the first drop of the load-deflection relationship (Fig. 20(b)). This decrease lead to

a more abrupt decay of the first branch of the  diagram (Fig. 20(a)), resulting a decrease of

the load at this point

5. Conclusions

In the present work a model based on the finite element method is proposed to simulate fiber

reinforced concrete (FRC) structures failing in bending and shear. The Reissner-Mindlin theory, in

the context of layered shells, is selected and special emphasis is dedicated to the treatment of the

shear behavior. The model is based on a multi-directional fixed smeared crack concept. By

considering the nonlinear behavior of each shell layer, crack propagation through the thickness of

these structures can be simulated. Fracture mode I is modeled with a crack stress vs. crack strain

trilinear diagram, whose defining parameters can be obtained by inverse analysis (IA) using the

load-deflection relationship obtained with three-point notched beam tests, carried out according to

the RILEM TC 162 TDF recommendations. With this strategy the values of the fracture parameters

that define the normal stress-strain crack constitutive relationship are obtained. Since this type of

test is much simpler and faster to execute, it becomes an advantageous alternative to the direct

tensile tests recommended to evaluate the fracture mode I parameters of cement based materials.

The adopted IA strategy is presented and discussed in the numerical simulation section. To simulate

the out-of-plane strain gradient that occurs in punching tests, a softening diagram is proposed to

model, after crack initiation, the out-of-plane shear components. The adequacy and accuracy of the

model is appraised using the results obtained in the punching test of a panel prototype built with

steel fiber reinforced self-compacting concrete (SFRSCC). This numerical strategy allows for an

accurate simulation of the load-deformational process of the experimentally tested panel, which

exhibited a brittle punching failure.

Several numerical simulations are presented and discussed. Mesh refinement, data obtained with
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Fig. 20 Influence of : (a) trilinear softening diagrams and (b) relationship between load and deflection at
the center of the test panel
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inverse analysis to define the trilinear diagram and a softening out-of-plane shear diagram are

alternatives whose influence on the prediction of the experimental panel response is investigated.

The use of softening laws to simulate the mode I crack opening and the out-of-plane shear

components is crucial in order to obtain accurate numerical simulations The numerical simulations

carried out with the proposed model and its comparison with the results of the experimental test

used in this work lead to the conclusion that the behavior of laminar SFRSCC structures failing in

punching can be numerically predicted by a FEM-based Reissner-Mindlin shell approach as long as

a crack constitutive model that includes a softening diagram for modeling both out-of-plane shear

constitutive laws is used.
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NB

Notations

= areas beneath the experimental load-deflection curves

= areas beneath the numerical load-deflection curves

df = steel fiber diameter

= crack constitutive matrix

= opening fracture mode stiffness modulus for the ith trilinear stress-strain softening branch

= crack constitutive matrix component relative to the crack normal opening mode (mode I)

= crack constitutive matrix component relative to the crack in-plane sliding mode (mode II)

= secant constitutive matrix ij component relative to the crack out-of-plane sliding mode

(mode III)

= secant stiffness relative to the crack out-of-plane sliding mode (mode III)

= constitutive matrix of in-plane membrane and bending components for concrete in elastic

regime

= constitutive matrix of in-plane membrane and bending components for cracked concrete

= constitutive matrix of out-of-plane shear components for cracked concrete

= concrete elasticity modulus

FRC = fiber reinforced concrete

Gc = concrete elastic shear modulus

= mode I (in-plane) fracture energy

= mode III (out-of-plane) fracture energy

= consumed mode III (out-of-plane) fracture energy

IA = inverse analysis
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IP = integration point

SFRSCC= steel fiber reinforced self compacting concrete

= transformation matrix from the coordinate system of the finite element to the local crack

coordinate system

f
c

= compressive strength

f
ct = tensile strength

lb = crack bandwidth

lf = steel fiber length 

n, t = crack local coordinate system

OP = out-of-plane

p1 = shear degradation factor

p2 = parameter defining the mode I fracture energy available to the new crack

s = sliding displacement

w = opening displacement

xi = element local coordinate system

αi = fracture parameters used to define the trilinear stress-strain softening diagram

αth = threshold angle

β = shear retention factor

∆εmf = vector containing the in-plane membrane and bending strain incremental components

εcrco = elasto-cracked strain

εcr = crack strain

εco = elastic concrete strain

= crack normal strain

= crack normal strain used to define point i in the trilinear stress-strain softening diagram

= ultimate crack normal strain

= vector containing the out-of-plane shear strain components

= out-of-plane shear strain ij component

= out-of-plane peak shear strain

= out-of-plane shear strain

= out-of-plane peak shear strain for the ij component

= out-of-plane ultimate shear strain

= out-of-plane ultimate shear strain for the ij component

= out-of-plane maximum shear strain in the softening branch

= out-of-plane maximum shear strain ij component in the softening branch

ν = Poisson’s ratio

θ = angle between the element local coordinate system and the crack local coordinate system 
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ξi = fracture parameters used to define the trilinear stress-strain softening diagram

= vector containing the in-plane membrane and bending stress incremental components

= crack normal stress

= crack normal stress used to define point i in the trilinear stress-train softening diagram

= vector containing the out-of-plane shear stress components

= in-plane crack shear stress

= out-of-plane shear strength

= out-of-plane shear stress

= out-of-plane shear strength for the ij component

= out-of-plane shear stress for the ij component

= out-of-plane maximum shear stress in the softening branch

= out-of-plane maximum shear stress ij component in the softening branch
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