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Abstract

This paper describes a second-order method that can be used to calculate the
optimal solution of a nonlinear program with equality and inequality
constraints. The functions that define the mathematical program are generalized
polynomials, allowing for the interpretation and derivation of the objective
function and constraints, in afully automatic, exact and efficient manner. Slack
variables are used to convert the inequality constraints into equality constraints.
The optimal solution is calculated with the Lagrange-Newton method. Results
are presented for the cost minimization of linear 3D trusses, where successful
solutions have been achieved for problems with over 103 independent design
variables and over 104 constraints.

1 Introduction

First-order methods are the most commonly used in structural optimization
[4] [10] and are often combined with sensitivity analysis [7]. These algorithms
are usually employed to solve problems where the displacement method is used
and the behavior of the structure is considered to be linear. However, in many
problems this formulation is inaccurate or not applicable and the advantages of
the traditional approach vanish. General purpose optimization methods could
be used in these circumstances, but their inability to deal with large scale
problems and some difficulties associated with the calculation of derivatives
make this choice less attractive.

The use of second-order information has been referred by many authors
as a mean of increasing both the convergence rate and the accuracy of the
optimization methods [1] [11]. However, the calculation and storage of second
derivatives are considered too demanding and are usually avoided. Some
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alternative techniques try to collect second-order information without explicitly
calculating second derivatives [6]. The algorithm described in this paper is not
a genera purpose one, but is applicable to a wide variety of structural
optimization problems, with the advantages of being a true second-order
method.

2 Nonlinear programming

The minimization of a function subject to equality and inequality constraints
has the following general formulation

Minimize f(g) {<=(x1,...,xn) 1)
subject to
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In the algorithm presented in this paper, all the variables can assume
positive or negative real values and the functions f, g and h have the

following form
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Expression (4) describes a generalized polynomial that is exemplified
by the following function
f ( j — 2,-3 _ -1 2 _ (5)
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These kinds of expressions are stored in vectors where only the term
coefficients, the variable indexes and the exponents are present. The
expressions of the first and second derivatives can be easily obtained and
evaluated at the current solution. These operations are performed by the
computer in avery accurate and efficient manner, avoiding problems associated
with the symbolic derivation of complex expressions or the selection of a
suitable finite difference step [8].
Squared slack variables are added to the inequality constraints, allowing
for ageneric treatment of all the constraints as equalities [1].

gi()f)so - gi({()ﬂ'iz:o (i =:L...,m) (6)

This operation adds m variables to the nonlinear program. However, as
will be shown later, thisinconvenience is not significant.

3 Lagrange-Newton method

The Lagrangian of the nonlinear program described in the previous section is
given by [7]
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In equation (7), /~1g and /j“ are the Lagrange multipliers associated with

the inequality and equality constraints respectively. The total number of
variables is 2m+n+p. Vector X contains al these variables ordered in the

x=(sa%x2") ?

following way

The solution of the nonlinear program (1)-(3) is a saddle point of the
Lagrangian (7) and the following necessary conditions can be used in its
calculation

254" =0 (i=1...m (%)
DL()}):Q ~ |9*s=0 (i=1..m QO
Zm:Ag 99, Z/‘h ‘?hk (i:l,...,n) (11)
“ox =
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The Newton method can be used to calculate the solution of the system
of 2m+n+p nonlinear equations (9)-(12). When this technique is employed,
the optimization method is termed Lagrange-Newton [5]. For each Newton
iteration (q) the following system of linear equations must be solved

13
H(xe) axeenu(xe) =0 3

Matrix H is the Hessian of the Lagrangian and its terms can be

obtained by derivation of equations (9)-(12) in order to the variables indicated
in (8). Matrix H is symmetric and is composed of 16 submatrices, whose

expressions are
m m M @
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In most problems, the number of lines and columns of the Hessian
matrix is very large (2m+n+ p). Fortunately, the number of nonzero termsis
usually small and the system of linear equations (13) can be solved using an
algorithm that takes into account the sparsity of the matrix.

When Gaussian elimination is used, the algorithm spends amost all the
time reducing the (n+ p) x(n+p) symmetric submatrix. Submatrices H and

- 21

H can be efficiently eliminated looping over their nonzero terms. Storage
- 32

requirements are only significant for the (n+ p) x(n +p) symmetric submatrix,
because the other submatrices require only the storage of their nonzero terms.
For these reasons, the number of inequality constraints (m) does not affect
significantly the computation time and the storage requirements.

The solution of the system of linear equations (13) can aso be
calculated using a conjugate gradient algorithm [9]. Both members of equation
(13) are multiplied by H', because H is indefinite. The conjugate gradient

method is thus applied to a linear system whose coefficient matrix is IjT H.

This procedure increases the condition number significantly and the number of
CG iterations becomes unacceptably large. Despite its low storage
requirements, the conjugate gradient method is rarely advantageous, due to
significantly longer computation times when compared to Gaussian elimination

[2].

In each Newton iteration, vector A )f“ is used to update the current

solution. In order to increase the reliability of the process and the rate of
convergence, A )5‘“ is multiplied by a scalar value a . A standard line search

algorithm is used to calculate the value of a that minimizes the norm of the
error (||DL||) in the direction A X [11].

4 Scaling

Newton method based algorithms are much more reliable when the initia
solution is close to a minimum and when the problem is not ill-conditioned.
These conditions are more easily fulfilled if the original nonlinear program is
subjected to suitable transformations. The following variable transformation is
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performed by the computer program on each term of the generalized
polynomials that define the nonlinear program (4).

X =ZX (i =1....n) (20)

In equation (20), x are the original variables of the nonlinear program
(2)-(3), X are the scaled variables and Z are fixed scaling parameters. The

initial solution values x° are typically good candidates to be used as scaling

parameters. In these circumstances a unit initial solution is an obvious choice
for the application of the agorithm to the scaled nonlinear program.

According to transformation (6), the dack variables are treated as
decision variables and are equally scaled. A feasible initial solution usually
leads to a more reliable optimization process and it is desirable to use in the
scaled problem a unit initia solution for al the variables. In these

circumstances, the values of the fixed scaling parameters (Zi) associated with
the slack variables are

Z = \9@

For numerical reasons, small absolute values of Z, must be avoided.

Equation (20) can be used to calculate the values of the decision variables and
slack variables asif no scaling has occurred.

When the Newton method is employed to solve the system of nonlinear
equations (9)-(12), the values of the decision variables, dack variables and
Lagrange multipliers are ssmultaneously calculated during the iteration process.
For this reason, the values of the Lagrange multipliers should also be as close
to unity as possible. This requirement is approximately fulfilled with a
constraint normalization, i.e., a multiplication of al the constraints by a factor
chosen so that the norm of the gradient of each constraint is unitary at the initial
solution. This operation is easily performed because all the functions are
generalized polynomials (4) and their derivation, evauation and multiplication
by a factor are trivia. The most suitable initial value for each Lagrange
multiplier becomes also the unity. The Lagrange multipliers that correspond to
the original nonlinear program can be easily calculated from the scaled values

[2].
5 NEWTOP computer program

(21)
(=1..m

The agorithm described in the previous sections was coded in ANSI C and
caled NEWTOP [2]. The nonlinear program data is described using a
perceivable syntax, based in keywords, variable names and constraint titles.
The computer program parses and validates al the input data. Elementary
equality constraints (eg., x =c or x =cX;) are substituted in the origina

nonlinear program and occasional simplifications are then automatically
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performed. This feature greatly ssimplifies the task of generating a mathematical
program for a new type of problem.

Some graphical output is interactively available during the iteration
process. The information that can be displayed consists in the variation of the
variables and the evolution of the objective function, error and line search
parameter. Deficiencies in the initial solution or in the selection of some
parameters can be immediately diagnosed and corrected with no need to restart
the iteration process.

The solution of a wide variety of structural optimization problems
indicates that the NEWTOP program is reliable, accurate and reasonably
efficient in modern computational platforms. In the next section a large scale
truss optimization problem is presented.

6 Optimization of a 4096 - bar truss

The characteristics of the program NEWTOP were evaluated by means of a set
of parameterized trusses [2]. All these trusses have similar characteristics,
except the fact that the number of design variables progressively increases.
Only the largest example is presented here. In the structural optimization
problem the displacements are treated as decision variables x (integrated

formulation) [3] and thereis no variable linking.

The problem consists in the minimization of the volume of a building
roof. The structure is a 3D truss subjected to its self weight and to a vertical
live load. The truss is simply supported by the building walls with the
exception of alarge opening. The objective function is the volume of the 4096
truss bars. As the structure has 3135 degrees of freedom, the number of
decision variables is increased to 7231 (4096+3135). It was previously referred
that the number of inequality constraints does not affect significantly the CPU
time and the storage requirements, whereas equality constraints do. In these

circumstances the substitution of each equilibrium equation (h = O) by apair of

inequality constraints (h <0; -h <0) is advantageous. The following

inequality constraints are also considered: 4096 minimum area constraints,
2 x 4096 tension/compression stress constraints in the midpoint of each bar and
480 displacement constraints. The total number of inequality constraints is
19038 (2 x 3135+3 x 4096+480). These constraints are always present in the
mathematical program, i.e., no active set strategy is implemented.

A few days of CPU time were required to solve this problem in a
desktop workstation with 256 MBytes of RAM and = 40 MF ops. The optimal
solution can be visualized in Figure 1. Each bar is represented by a cylinder
whose base areais proportional to the area of the bar in the optimal solution.
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4 096 independent design variables
3135 degrees of freedom
19 038 inequality constraints

Error (scaled NLP) = 5.5E-4

CONSTRAINTS:
- minimum cross sectional area
- stress (tension/compression)
- maximum nodal displacement

NOTES:
- no variable linking
- no active set strategy

Figure 1: Visualization of the optimal solution of a 4096-bar truss.
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7 Conclusions

In this paper an agorithm based in the Lagrange-Newton method was
described. Some difficulties usualy associated with this method were
overcome, alowing for the solution of large scale structural optimization
problems. Quadratic convergence is the main advantage of this method, leading
to very accurate solutions in a small number of iterations. The inclusion of the
displacements in the vector of the decision variables can be problematic when
the structure has a large number of degrees of freedom and several load cases.
A wide variety of optimization problems can be handled, due to the versatility
and user-friendliness of the computer program.
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