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Abstract

A mathematical model for the analysis and optimization of reinforced concrete
slabs is presented. The formulation is based on the yield line theory and requires
the discretization of the slab into a mesh of triangular finite elements. The yield
lines are located on the sides of the finite elements and their identification is
automatically achieved. The reinforced concrete exhibits an elastic perfectly
plastic behavior and the static, kinematic and constitutive relations may be
organized into mathematical programs. Constraints expressing the serviceability
limit states or any other requirement may be added to the mathematical
programs.

In the analysis problem, the collapse load parameter and the variables that define
the collapse mechanism are calculated by a computer code that solves the
corresponding non-linear program (NLP). When the most economical design is
required, the variables of the NLP are the thickness of the slab and the flexural
reinforcement. In both cases, the geometry of the finite element mesh is
optimized and thus a small number of finite elements provide good results.
Examples illustrating the characteristics of the model are presented.

1 Introduction

The yield line theory (Johansen" %) is most commonly used in the plastic limit
analysis of reinforced concrete slabs, and its application is suggested by many
structural codes.

According to that theory, when loads applied to a reinforced concrete slab
increase, plastic deformations occur along lines. When the number of lines is
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such that the structure is reduced to a mechanism, collapse occurs. In the yield
line method, potential collapse mechanisms are postulated and the corresponding
load parameters are evaluated.

The model presented in this paper is based on a formulation developed by
Munro® and Da Fonseca’. A triangular finite element model in which potential
yield lines are restricted to element boundaries represents the reinforced concrete
slab. The fundamental relations of that model are equivalent to a pair of dual
mathematical linear programs leading, in conformity with an optimization
criterion, to the safest solution.

Introducing some new developments, the aforementioned linear model
becomes non-linear and the plastic limit analysis or design (synthesis) of
reinforced concrete slabs has to be formulated as a non-linear mathematical
program.

2 Mathematical programming

The mathematical formulation of an optimization problem may be written as
follows:

Minimize f(x) ;:(x,,...,x,,) (1
subject to:

g(x)<0 g=(2-2x) @)

h(x)=0 h=(h. 1) 3)

where x; (i=1,...,n) are the design variables, g < 0(= 1, ..,m) are the
ineguality constraints, iy =0 (k=1, ..., I) are the equality constrainis and [is the
objective function.

This non-linear mathematical program is solved by a computer code called
NEWTOP (Azevedo®), using the Lagrange-Newton method.

3 Mathematical model for plastic limit analysis

In plastic limit analysis problems, the collapse load parameter and the
corresponding mechanism are determined. First, the slab is discretized into a
mesh of triangular elements, taking into consideration that yield lines will be
restricted to element boundaries. In order to establish the fundamental relations
(kinematic, static and constitutive), boundary conditions, loads (multiplied by a
load parameter) and material properties are given as data.

The kinematic variables are associated with mechanism modal deformations,
regardless of prior elastoplastic deformations. These variables (see Figure 1)
consist of the vertical displacements of the nodes and the rotations of the
triangular finite element sides. Static variables (see Figure 1) consist of the
corresponding nodal forces and bending moments. Constitutive relations express
the elastic perfectly plastic behaviour of the material, by limiting the bending
moments on the elements sides to be less or equal to the plastic moments and
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stating that mechanism deformations are only possible at plasticized element
sides.

The most innovative feature of the model presented in this paper is the
“optimization” of the yield line layout. In fact, the nodal coordinates can be
changed in order to obtain improved solutions, even with coarse finite element

meshes.
Aw l/% fl;‘ ; %m
Figure 1. Kinematic variables and static variables of the model.

3.1 Finite element geometry

The static and kinematic relations involve the geometric variables defined in
Figure 2.

Figure 2. Geometry of the triangular finite element.

3.2 Kinematic relations

When the collapse mechanism is formed, the slab is divided in several panels
with rigid behaviour. Angular discontinuities develop, but compatibility is
satisfied by continuity of vertical displacements. Rotations of the outward
normals to the three sides of the single element, A8; (i=1,2,3), can be expressed in
terms of the corner vertical displacements, Aw; (j=1,2,3), as follows:

0,1 | L A & |Taw
hl [Ihl [lhl
a, 1 b,
= = Aw 4
AGZ llhl hl Izhz ’ ( )
b, g 1
8] | hh  Lh kLA

Assembling eqns (4) for all elements of the slab, the finite element kinematic
relations, expressing the compatibility conditions, can be written in the following
form, where E is the kinematic transformation matrix:
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3.3 Static relations

Each element has two types of loads: the body forces and the generated
stress-resultants along the element sides. The former are expressed by statically
equivalent vertical nodal forces applied to the element nodes, f; (j=1,2,3). The
latter correspond to the total bending moments, m; (i=1,2,3), equivalent to the
bending moment distribution along each side, and to the vertical nodal forces,
g, (7=1,2,3), equivalent to the shear force and twisting moment distributions
along each side, and applied to the element vertices. For each element, static
relations expressing equilibrium conditions are given by:

5 +a _L a _b;_ m
:l Lh, Lk
1 a
g 5] 4= -— —=l|m 6
f2+q, 1h, k) Lh, 2 (6)
& b 1
Li*as ]| 4h Lh, kLTS

The static relations for the entire system of finite elements are the assemblage
of eqns (6) and can be written in the form

J=E'm )

where £ is the static transformation matrix and forces g; are not present because
their sum at each node is equal to zero.

The static transformation matrix being the transpose of the kinematic
transformation matrix illustrates the static-kinematic-duality.

3.4 Constitutive relations

Constitutive relations modeling the structural material express relations between
static and kinematic variables. In the present model, they consist of yield
conditions, flow rule and complementary conditions, these last ones ensuring that
mechanism deformations are only possible at the plasticized element sides
(Da Fonseca®).

Yield conditions are based on the Johansen's yield criterion (J ohansen'). They
impose limiting values on the magnitude of the total bending moments on the
element sides. For the i side:

—-m; <m,<m; . (8)
The plastic normal bending moment of resistance per unit length of an

element side, m_ , when the steel reinforcement is orthogonal to the side (see

P
Figure 3), can be obtained by the following expression (Figueiredo"’):

m,=0.90f,,d A4, . ®)
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Figure 3. Plastic normal bending moment of resistance per unit length.

When the steel reinforcement is oriented in two orthogonal directions (see
Figure 4), the plastic normal bending moment of resistance per unit length on the
yield line ¢ is given by eqn (10) (Figueiredo®).

p~Mpx

;=;+;w:0'90fyd dxAﬂcos{% —a,]+0.90fyd d, A, cos*(e,). (10)
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Figure 4. Contribution of the reinforcement for the plastic bending moments.

3.5 Mathematical programs

The plastic limit analysis governing relations are recognized (Da Fonseca®) as a
set of Karush-Kuhn-Tucker conditions that are equivalent to a pair of dual
mathematical programs, the primal program (unsafe) and the dual program
(safe), both leading to a unique solution.

It must be noticed that the unsafe nature of the solution is related to the finite
element model and not to the selected mathematical program. In fact, the
mathematical model satisfies kinematic conditions but may not fulfil yield
conditions at the interior of the elements. Since is not guaranteed to be statically
admissible, the solution is unsafe. If the dual mathematical program is used, the
yield line analysis problem takes the form :

Maximize: Load parameter an
Subject to:  Equilibrium conditions (12)
Yield conditions (13)
Supplementary code conditions (14)

Besides the static admissibility constraints (eqns 12-13), supplementary code
conditions (eqn 14) may be added in order to validate the use of the yield line
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method, as stated in structural codes. For example, some structural codes limit
the ratio of the support moments to the mid-span moments and/or the steel ratios.

3.6 Variable geometry of the finite element mesh

Even in a simple case, in which the designer knows the topology of the collapse
mechanism, uncertainties may arise in the geometry of the finite element mesh.
For example, in a rectangular simply supported slab with an uniformly distributed
load, the selection of the mesh shown in Figure 5a) is straightforward. However,
the location of the nodes A and B that correspond to the most critical mechanism
(see Figure 5b)) is not known a priori.

aa
o

7

a) - b) )

Figure 5. a) Finite element mesh. b) Collapse mechanism. ¢) Refined mesh.

Obviously, a refined mesh might be used (Figure 5c)), but a more powerful
technique is to include these coordinates as variables of the optimization process.
However, if this possibility and the selection of the collapse mechanism are
simultaneously present in the mathematical program (eqns 11-14), during the
optimization of the load parameter the yield lines will be moved away from the
locations where the bending moments reach higher values. This problem may be
overcome with the decomposition of the optimization process in two phases. The
first phase corresponds to the solution of a maximization problem (eqns 11-14),
where the nodal coordinates are kept unchanged. The second phase is a
minimization problem (eqns 15-19), where some node coordinates may vary.
Some mechanism conditions must be added (Figueiredoé).

Minimize: Load parameter (15)
Subject to:  Equilibrium conditions (16)
Yield conditions a7
Supplementary code conditions (18)
Mechanism conditions (19)

4 Mathematical model for plastic limit synthesis

The solution of a plastic limit synthesis problem also implies the establishment of
kinematic, static and constitutive relations. In the analysis problem, the slab
thickness and steel reinforcement are fixed and the design variable is the value of
the load parameter corresponding to the maximum loads that can be applied to
the slab. In a synthesis problem, the loads are known and the slab thickness and
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steel reinforcement are the design variables. If the optimization criterion is
expressed in terms of a function Z, the synthesis problem may then be formulated
as follows (Da Fonseca®):

Optimize: Z (20)
Subject to:  Equilibrium conditions 2n
Yield conditions 22)

When the objective is to find the lowest cost solution for the slab, the function
Z must express the cost associated to each solution, in terms of volumes and unit
costs per unit volume for both concrete and steel.

4.1 Mathematical program

The solution of such a mathematical program (eqns 20-22) verifies the ultimate
limit states only. However, since the slab thickness and the steel reinforcement
are variables of the problem, it is possible to establish additional conditions in
order to satisfy the serviceability limit states. Limits on the slab thickness and on
the reinforcement area are examples of serviceability conditions. It is also useful
to establish technological conditions. For instance, a solution with distinct
thickness for all elements should be avoided. Supplementary code conditions
may also be included.
Plastic limit synthesis problems may then be expressed in the following way:

Minimize: Cost (23)
Subject to:  Equilibrium conditions (24)
Yield conditions (25)
Serviceability conditions (26)
Technological conditions @27
Supplementary code conditions (28)

4.2 Variable geometry of the finite element mesh

As described in Section 3.6, when the nodal coordinates are not fixed, the
optimization algorithm tries to move the yield lines away from the locations
where the bending moments reach higher values. For this reason, in plastic limit
synthesis the optimization is also decomposed in two phases. The first phase
corresponds to the resolution of the minimization mathematical program (eqns
23-28), with fixed nodal coordinates and loads (unit load parameter). The
solution defines the concrete thickness, the areas of steel reinforcement and the
collapse mechanism configuration. The second phase consists in the resolution of
the minimization mathematical program described by eqns (15-19). Slab
thickness and steel reinforcement obtained in the first phase are fixed. Nodal
coordinates and load parameter are now variables of the problem. A new load
parameter, lower or equal to one, and a new geometry for the mesh are obtained.
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It is then necessary to repeat the first phase, considering the new geometry of
the mesh and a unit load parameter. The process becomes iferative, being
terminated when the variation of the load parameter becomes negligible.

5 Examples
5.1 Plastic limit analysis problem

The following example has been studied by several authors and has become a test
to models and computer codes. The slab, represented in Figure 6a), is isotropic
and uniformly loaded. Using a mesh of 60 finite elements (see Figure 6b)),
Da Fonseca® got to a ratio of the load parameter, A, to the bending moment of

resistance per unit length, m_p , equal to 0.396, while Ltcio’ obtained 0.4046.
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Figure 6. a) Geometry and support conditions. b) Mesh geometry.

When the “first phase” mathematical program for the plastic limit analysis
(eqns 11-14) is used to formulate this problem, the solution A, /m,=04046 is
obtained. The corresponding collapse mechanism is shown in Figure 7a).
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Figure 7. a) Collapse mechanism b) Optimized mesh geometry.
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The solution of the “second phase” mathematical program (eqns 15-19)
describes the new optimized geometry for the finite element mesh, (see
Figure 7b)). The ratio of the load parameter to the bending moment of resistance
per unit length is then 0.3930.

5.2 Plastic limit synthesis problem

Figure 8a) shows a rectangular slab, isotropic (equal reinforcement in both
orthogonal directions and in both the upper and lower layers), with all edges built
in. Under an uniform load, the collapse mechanism topology is known
(Figure 8a)), but coordinate x may be “optimized”. Since two axes of symmetry
exist, the study is performed for one-fourth part of the slab (see Figure 8b)).

L, 200 3 200 | 200
1 1 h 1

a) b)

Figure 8. a) Geometry and collapse mechanism. b) Mesh geometry.

In the optimal solution of the “first phase” mathematical program (eqns
23-28) the slab thickness is 0.2020m and the steel reinforcement is 7.8237cm?/m,
corresponding to a cost of 138132 “cost units” (c.u.). In the data definition, a
concrete density of 25kN/m”> and a live load of 10kN/m?* were considered. Dead
and live loads were multiplied by a safety factor of 1.5. Concrete strength (fua) is
equal to 13300kPa and its cost is 13000 c.u./m’. Steel reinforcement has a tensile
strength (f;q) of 348000kPa and costs 1000000 c.u/m’. In order to verify the
serviceability limit states, a minimum value of 18 cm for the slab thickness, a
minimum steel reinforcement ratio of 0.15 and a reinforcement cover leading to
d=0.03m (see eqn (10)) were admitted. The “second phase” mathematical
program (eqns 15-19) gives a load parameter of 0.98476, corresponding to the

optimized mesh geometry represented in Figure 9.
4.7570

—
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Since the new load factor is less then one, the first solution is unsafe and a
second iteration must be solved. When the “first phase” mathematical program
eqns (23-28) is solved again, considering fixed the new geometry (see Figure 9),
the solution corresponds to a slab thickness of 0.2028m, to a steel reinforcement
of 7.8751cm”m and to a cost of 138875 c.u.. The second mathematical program
(eqns 15-19) gives now a load parameter of 1.0, stating that design is achieved.

6 Conclusions

Traditionally, the implementation of the yield line method requires a tedious
analysis of potential collapse mechanisms. Formulations involving the yield line
method and a model of finite elements produce good results, but involve the use
of relatively dense meshes. The model presented in this paper, permitting the
automatic selection of the collapse mechanism together with the possibility of
changing nodal coordinates, allows for the determination of safer solutions, even
if coarse finite element meshes are used. Examples show the validity of the
model.
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