
Object oriented implementation of a
second-order optimization method

L. F. D. Bras1 & A. F. M. Azevedo1

1Civil Engineering Department, Faculty of Engineering,
University of Porto, Portugal.

Abstract

A structural optimization problem may be formulated as a single nonlinear
program (NLP) and solved with a second-order method. This class of methods
requires first and second derivatives of the objective function and of the
inequality and equality constraints. When the size of the problem is large,
derivative calculation may become tedious and error prone. Automatic
differentiation (AD) techniques provide exact values for the derivatives without
user intervention. In this paper the object oriented implementation of a
Lagrange-Newton optimization algorithm is presented. An object oriented parser
is used to interpret all the functions that describe the NLP. First and second
derivatives are calculated with AD techniques using Rall numbers and their
associated overloaded operators. A shape optimization example is presented to
illustrate the proposed techniques.

1 Introduction

Object oriented programming techniques provide higher-level tools to
manipulate information. Before coding a numerical algorithm classes must be
developed in order to implement the basic operations that will be required at a
later stage. These classes are composed of sets of variables that store the
information related to the class, and operations that safely manipulate that data.
Vectors, sparse matrices, functions and Rall numbers [1] are examples of classes
and addition, multiplication, evaluation, entry removal and partial derivation are
examples of operations. The computer code that is described later required the
development of a large number of basic classes. Object oriented techniques, such
as inheritance, polymorphism and templates [2], played an important role in the

270 Computer Aided Optimum Design of Structures VII

organization of the relationship between classes and provided significant
economies in terms of development time and code extension. The higher-level
algorithm utilizes the basic classes and implements new ones in order to perform
its task.

2 Nonlinear programming

In the present work, structural optimization problems are formulated as a single
nonlinear program (NLP), whose general form is shown in eqn (1).

()

() () ()
() ()pkxxh

mjsxxgxxg

tosubject

xxfMin

nk

jnjnj

n

,...,10,...,

,...,10,...,0,...,

,...,.

1

2
11

1

==

==+→≤
(1)

Squared slack variables are used to allow for the replacement of all the
inequality constraints by equality constraints. The NLP (1) is solved by the
Lagrange-Newton method using the necessary condition ∇ L=0, where L is the
Lagrangian. The resulting system of n + 2 m + p nonlinear equations (2) is
solved by the Newton method [3].

()

()
()
()pkh

mjsg

mjs

ni
x

h

x

g

x

f

k

jj

j
g
j

i

k
p

k

h
k

i

j
m

j

g
j

i

,...,10

,...,10

,...,102

,...,10

2

11

==

==+

==

==
∂
∂+

∂
∂

+
∂
∂ ∑∑

==

λ

λλ

(2)

In each Newton iteration (q) the following system of linear equations has to
be solved

() () 01

~~

1

~~
=∇+∆ −− qqq XLXXH (3)

In eqn (3) H is the Hessian matrix and X is a vector containing all the
variables (xi, sj, λj

g, λk
h). The current solution is updated with

qqqq XXX
~

1

~~
∆+= − α (4)

where αq is the line search parameter. Scaling techniques are used to improve the
robustness and efficiency of the iterative process (see Section 6). The sparsity
pattern of the Hessian matrix H is exploited in order to save storage and

Computer Aided Optimum Design of Structures VII 271

unnecessary operations. With this approach, optimization problems with
thousands of independent variables have already been solved [4].

3 Automatic differentiation

First and second order derivatives of the functions f, g and h are required in order
to calculate the components of eqn (3). The robustness and convergence rate of
the Newton algorithm are highly dependent on the precision of these derivatives.
When numerical differentiation is used, each variable has to be shifted. The size
of this perturbation has a significant influence in the precision of the derivative
and a suitable value for its size may be difficult to estimate [5]. The calculation
of the Hessian matrix requires a large number of perturbations and function
evaluations. To avoid errors associated with numerical differentiation, the user of
the optimization code might be obliged to supply derived functions. When the
size of the NLP is large, this technique becomes cumbersome and error prone. A
possible solution to these problems is the development of code that applies the
rules of differentiation. This technique is called automatic differentiation (AD)
and is difficult to implement, due to the complexity of the algorithms involved.
Object oriented programming techniques provide tools that relieve the task of
programming the differentiation of user-supplied functions. In the present work,
an expression parser is used to decompose each function into operands and
operators (see Section 5). The operators are redefined in order to apply the rules
of differentiation.

4 Rall numbers

A Rall number is a set of information that contains the numerical value of an
operand, the numerical value of its gradient and the numerical value of its
Hessian. When an operator is applied to an operand or to a pair of operands, the
differentiation rules are used in order to perform the necessary tasks that lead to
the correct evaluation of the gradient and Hessian of the result of the operation.
In the present work a Rall number is implemented as a C++ class [1]. Its data
members and the multiply operator are shown in the following example
involving the functions f (x1, x2) and g (x1, x2) (see Table 1). Eqns (5) and (6)
correspond to the evaluation of the first and second derivatives of the product of
a pair of functions.

()
111 x

g
fg

x

f
gf

x ∂
∂+

∂
∂=

∂
∂ (5)

()
21

2

122121

2

21

2

xx

g
f

x

g

x

f

x

g

x

f
g

xx

f
gf

xx ∂∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂+

∂∂
∂=

∂∂
∂ (6)

272 Computer Aided Optimum Design of Structures VII

When a Rall number is a constant, its data members are initialized with the
following values (see Table 1):

x = constant value; v = [0,0]; m = [[0,0],[0,0]]

When a Rall number represents one of the existing variables (x1 or x2 in this
example), its initialization becomes:

x = value of x1; v = [1,0]; m = [[0,0],[0,0]]

or
x = value of x2; v = [0,1]; m = [[0,0],[0,0]]

Table 1: Abridged definition and implementation of the class CRall.

class CRall {
double x; // Operand value
double v[2]; // df/dx1, df/dx2
double m[2][2]; // d2f/dxi dxj

public:
CRall CRall::operator* (const CRall & g) const {
CRall t;
t.x = x * g.x;

t.v[0] = v[0]*g.x + x*g.v[0];
t.v[1] = v[1]*g.x + x*g.v[1];

t.m[0][0] = m[0][0]*g.x+v[0]*g.v[0]+v[0]*g.v[0]+x*g.m[0][0];
t.m[0][1] = m[0][1]*g.x+v[0]*g.v[1]+v[1]*g.v[0]+x*g.m[0][1];
t.m[1][0] = m[1][0]*g.x+v[1]*g.v[0]+v[0]*g.v[1]+x*g.m[1][0];
t.m[1][1] = m[1][1]*g.x+v[1]*g.v[1]+v[1]*g.v[1]+x*g.m[1][1];

return t;
}

};

All the other operations involving Rall numbers are implemented in a similar
manner (e.g., addition, subtraction, division, exponentiation, trigonometric
functions, logarithm). In the current version of the optimization software, vectors
and matrices are stored in sparse arrays.

5 Expression parser

When a computer program needs to evaluate an expression, the most
straightforward strategy is to hard code the expression before the compilation of
the module. Whenever the expression has to be modified, a new compilation is
required. The alternative of coding an expression parser has also some
disadvantages, such as code complexity and a decreased performance. An object
oriented programming language (e.g., C++) can lighten the task of coding and
reusing complex algorithms, by means of supplying tools that allow for an higher

Computer Aided Optimum Design of Structures VII 273

abstraction level. Examples of such techniques are operator overloading,
templates, inheritance and polymorphism [2].

The expression parser described in this Section is based on the work of
Rogers [6]. Some enhancements and new features were added, such as the
support for the most common intrinsic functions (e.g., sin, cos, sqrt, log, pow)
and the implementation of scaling techniques (see Section 6).

Three types of entities can be extracted from an expression: constants,
variables and operators. According to the priority rules of the parentheses and
operators, all the objects are inserted in a binary tree (see Figure 1). A symbol
table is an independent object where the names of all the variables and their
values are stored. The evaluation of the root object causes a postorder traversal
of the binary tree. When a variable is found, the supplied symbol table is
searched and the corresponding value is extracted. These operations produce the
result of the evaluation of the whole expression and are exemplified with eqn (7)
(see also Figure 1).

)6(/)8(2
321 xxx −+ (7)

8 x2

*x1

+

x3 2

^6

−

/

Figure 1: Binary tree obtained from eqn (7).

In the tree shown in Figure 1, the terminal nodes are replaced with Rall
numbers (see Section 4). The operations between Rall numbers are subject to the
same priority rules that are used in the evaluation of the expression. Since the
Rall numbers also operate with the gradient and Hessian of the function, their
numerical values are simultaneously evaluated. In order to avoid the systematic
manipulation of all the variables that are present in an optimization problem, a
data member is used to store the list of variables that need to be considered in
each function.

Figure 2 shows the hierarchy diagram of the classes that implement the
behavior of all the expression components. The base class Exp_Obj defines the
common interface of all the derived classes. Polymorphism is used to facilitate

274 Computer Aided Optimum Design of Structures VII

the manipulation of the expression objects, regardless of their specified type or
functionality.

During the construction of the binary tree, the following tasks are performed:
read a token, check the type of the token and add the token to a stack. Variables
and literals are added to the expression stack and operators are added to the
operator stack. Each operator and each parenthesis has its priority level and is
processed accordingly.

Exp_Obj

Binary_Obj

Mul_Obj

Binary_Add_Obj

Binary_Sub_Obj

Div_Obj

Pow_Obj

Unary_Obj

Unary_Log10

Unary_Loge

Unary_Cos

Unary_Exp

Unary_Minus

Unary_Sin

Unary_Sqr

Unary_Sqrt

Base_Expression

CExpression

Close_Paren_Obj

Literal_Obj

Open_Paren_Obj

Start_Obj

Stop_Obj

Variable_Obj

ExpStack

Symbol_Table

Figure 2: Hierarchy diagram of the expression parser.

6 Scaling

In a mathematical program several types of variables appear in the objective
function and constraints. It is common to have variables and function values in
different units, exhibiting dissimilar orders of magnitude (e.g., Young’s modulus
and rotation angle). When this happens the optimization algorithms may
experience numerical instabilities, slow convergence or even a global failure.
These problems are caused by round off errors, due to the limited precision of
the computer calculations and due to a high condition number in some matrices.
Two simple techniques may be implemented to alleviate these problems, namely

Computer Aided Optimum Design of Structures VII 275

variable scaling and constraint normalization. Variable scaling can be performed
by means of the replacement of each variable xi by the product Zi yi where Zi is
the scaling factor (usually the initial value of xi), and yi is the new variable in the
mathematical program, having a unitary initial value. Constraint normalization
consists in the multiplication of the objective function and each constraint by a
constant, whose value sets the initial Euclidean norm of the gradient equal to
one. These techniques are illustrated with the nonlinear program (8).

050010

02.0

0200

2000.

21

2
42

2
31

1

=+−
=+−

=++−

xx

xx

xx

tosubject

xMin

(8)

Assuming the initial solution (500, 0.1, √300, √0.1), and applying the
aforementioned techniques, (8) is replaced by the NLP (9) [3].

0707.0707.0

0447.0894.0447.0

0384.0256.0640.0

.

21

2
42

2
31

1

=+−
=+−

=++−

yy

yy

yy

tosubject

yMin

(9)

The scaled version of the mathematical program is numerically more stable
and has a faster convergence [3]. The solution of the original NLP (8) can be
recovered from the solution of (9).

The implementation of the scaling of the variables implied the inclusion of a
new data member in each entry of the symbol table in order to store the scaling
factor. The constraint normalization factor is stored in a data member of the class
Base_Expression (see Figure 2). The computation of derivatives has to take into
account these modifications of the expressions.

7 Numerical example

A simple shape optimization problem is presented in order to illustrate the main
characteristics of the proposed algorithm. It consists on the minimization of the
weight of a two bar truss, subjected to a single load case (see Figure 3) [7]. Dead
load is not considered and buckling may be ignored due to the fact that both bars
are under tension. The nonlinear program describing the optimization problem is
defined in (10).

276 Computer Aided Optimum Design of Structures VII

()

()

()

6.11.0;0.42.0

1
18

1,

1
18

1,

1,.

21

211

2
22212

211

2
22211

2
21121

≤≤≤≤

≤







−+=

≤







++=

+=

xx

xxx
xCxx

xxx
xCxx

tosubject

xxCxxwMin

σ

σ (10)

x2x2

1.0 m

x1 (cross-sectional area)x1

F = (f1,f2)

1 2

3
f2 = 8 f1

F = 200 kN

Figure 3: Shape optimization of a two bar truss.

In the nonlinear program (10), C1 = 1.0 and C2 = 0.124. These values are not
modified during the iteration process. The initial values of x1 and x2 are 1.5 cm2

and 0.5 m respectively. Table 2 shows the syntax of the input file of the
optimization program, containing the description of the nonlinear program (10).
The last four lines declare the type of each variable, its initial value and its name.

Table 2: Input file of the optimization program.

Main title
Shape optimization of a two bar truss

N. of eq. constr.; N. of ineq. constr.
0 6

Objective Function
C1*x1*sqrt(1+x2^2);

Allowable stress - bar 1
C2*sqrt(1+x2^2)*(8/x1+1/x1/x2)-1;

Computer Aided Optimum Design of Structures VII 277

Table 2 (cont.): Input file of the optimization program.

Allowable stress - bar 2
C2*sqrt(1+x2^2)*(8/x1-1/x1/x2)-1;

Minimum x1
-x1+0.2;

Maximum x1
x1-4.0;

Minimum x2
-x2+0.1;

Maximum x2
x2-1.6;

N. of variables
4

SUBSTITUTED, 1.000, C1;
SUBSTITUTED, 0.124, C2;

INDEPENDENT, 1.5, x1;
INDEPENDENT, 0.5, x2;

Figure 4 shows the iteration history of the objective function whose optimal
value is w = 1.509. The intermediate solutions exhibiting objective function
values that are smaller than the optimum correspond to infeasible points. Since
the Lagrange-Newton method is based on the search of a saddle point of the
Lagrangian, there is no guarantee that the optimum be approached from the
interior of the feasible region. The optimal value of the independent design
variables is x1 = 1.412 cm2 and x2 = 0.377 m.

0 1 2 3 4 5 6 7

1.1

1.3

1.5

1.7

w (x1, x2)

Figure 4: Iteration history – objective function w.

278 Computer Aided Optimum Design of Structures VII

Several optimization problems described in the books of Arora [8] and
Azevedo [3] were solved with this computer code and the results were compared
with the solutions obtained with other computer programs. Since a good
agreement was always obtained, the proposed algorithm and the complex C++
coding have been validated.

8 Conclusion

The work presented in this paper consists on the combination of a robust
second-order optimization method, an object oriented parser and an automatic
differentiation algorithm based on operator overloading and Rall numbers. Some
preliminary numerical experimentation indicates that the code is very versatile,
i.e., its adaptation to new types of optimization problems is very easy. Code
maintenance and the implementation of alternative numerical techniques are
facilitated by the object oriented design and its inherent features, such as
polymorphism and inheritance. Some work is still needed to improve the global
efficiency of the optimization process.

References

[1] Barton, J. J., Nackman, L. R. Automatic differentiation. C++ Report,
pp. 61-63, February 1996.

[2] Stroustrup, B. The C++ Programming Language, Third Edition,
Addison-Wesley, 1997.

[3] Azevedo, A. F. M. Optimization of Structures with Linear and Nonlinear
Behavior, Ph.D. Thesis (in Portuguese), Faculty of Engineering, University
of Porto, Portugal, 1994.

[4] Azevedo, A. F. M., Second-order structural optimization, Computer Aided
Optimum Design of Structures IV-OPTI 95, eds. S. Hernandez, M. El-Sayed
& C. A. Brebbia, Computational Mechanics Publications, pp.67-74, 1995.

[5] Nash, S. G., Sofer, A. Linear and Nonlinear Programming, McGraw-Hill,
1996.

[6] Rogers, J. An object oriented expression evaluator. C/C++ Users Journal,
pp. 43-51, April 1996.

[7] Svanberg, K. The method of moving asymptotes-a new method for structural
optimization. International Journal for Numerical Methods in
Engineering, 24, pp. 359-373, 1987.

[8] Arora, J. Introduction to Optimum Design, McGraw-Hill, 1989.

