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Summary: When a concrete structure is subjected to a multi-stress state, different crack modes can 
be developed. To simulate with enough accuracy these fracture modes, a three-dimensional model 
must be used. In the present work, a multi-fixed smeared 3D crack model is proposed to predict the 
normal and shear failure modes of concrete structures. Softening stress-strain diagrams are proposed 
to model, after crack initiation, the normal and shear components. The performance of the developed 
model was appraised by simulating the behavior observed in punching tests with lightweight panels of 
steel fiber reinforced self-compacting concrete (SFRSCC). 
 
 
1 INTRODUCTION 

Smeared and discrete crack concepts can be used to model the crack propagation in concrete 
structures [1]. Since fiber reinforcement can assure the formation of diffuse crack patterns, a smeared 
crack model can be conceptually more appropriate, and more effective from the computational 
point-of-view, for the simulation of the behavior of fiber reinforced concrete structures. Previous 
research indicated that fracture mode I can be simulated using a tri-linear softening diagram, whose 
parameters can be obtained from direct tensile tests or performing inverse analysis with the 
force-deflection data registered in three-point notched beam bending tests carried out according to the 
RILEM TC 162-TDF recommendations [2]. To simulate the shear fracture modes, a shear retention 
factor is currently used. With this model the shear stress transfer between the crack planes decreases 
with the increase of the normal crack strain, according to an assumed relation. In most structures 
assumed as behaving in plane stress state, this strategy provides simulations with reasonable 
accuracy. Exceptions occur in structures which fail by the formation of a critical shear crack. For these 
cases, the simulation of the structural softening with high accuracy requires the adoption of a 
softening crack shear stress vs. crack shear strain relationship. This procedure introduces some 
difficulties in the convergence of the incremental-iterative procedure of the standard Newton-Raphson 
method adopted for the structural nonlinear analysis. However, even with these strain-softening crack 
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constitutive laws, adopted to simulate the in-plane fracture modes, punching rupture cannot be 
accurately simulated in laminate structures submitted to concentrated loads. Using the 
Reissner-Mindlin theory for shell structures, the structural softening registered in the punching tests 
with lightweight steel fiber reinforced self-compacting concrete (SFRSCC) is well predicted when a 
strain-softening diagram to simulate both out-of-plane shear components is adopted [3]. This model, 
however, cannot reproduce the crack pattern observed in these punching tests, since the cracks are 
assumed to be orthogonal to the middle surface of the shell. To simulate this type of failure, a full 3D 
crack constitutive model is required [4]. 

In the present work, a multi-fixed smeared 3D crack model, under the framework of the finite 
element method, is proposed to simulate the behavior of fiber reinforced concrete structures failing in 
shear. The model was included in the 3D solid element of the FEMIX computer code, which is a 
general purpose finite element program [5]. 

The proposed model is described and its performance is appraised by simulating punching tests 
with lightweight panels of steel fiber reinforced self-compacting concrete (SFRSCC) [6]. 

2 NUMERICAL MODEL 

2.1 Introduction 

In a previous work [3], the Reissner-Mindlin theory was adopted in the prediction of the shear 
failure of layered shell structures. The material nonlinear behavior was simulated by considering the 
crack propagation in the layers that discretize a finite element. After crack formation, the crack 
constitutive laws and the out-of-plane shear stress-strain relationships were modeled by softening 
diagrams. Modeling the softening of both out-of-plane shear components was decisive to accurately 
simulate the failure mode registered in the punching tests. However, since the model predicts cracks 
that are orthogonal to the middle surface of the shell, the punching failure surface cannot be 
obtained. To simulate this complex failure mode a three-dimensional approach must be used. In 
the present work the multi-fixed smeared 2D crack model, previously implemented in the FEMIX 
computer code [7], is generalized to a multi-fixed smeared 3D crack model (implemented with solid 
finite elements). The fracture mode I is simulated with a tri-linear stress-strain diagram. The 
characterization of the shear fracture modes is much more complex, since the shear stress transfer 
between the crack surfaces depends on several parameters, such as concrete lateral confinement, 
crack opening, roughness of the crack surfaces, concrete strength class, number of cracks and its 
relative orientation, etc. A softening shear stress-strain diagram is proposed to simulate the shear 
stress transfer between the crack surfaces. 

2.2. Formulation 

When the material behavior is considered to be nonlinear, its constitutive matrix depends on the 
stress or strain levels. In this case, to obtain the solution of the resulting system of nonlinear 
equations, an incremental-iterative technique is normally used. In this procedure the external load is 
applied incrementally and the relationship between incremental strain and stress is given by the 
following equation 

Dσ ε∆ = ∆  (1)

where σ∆  represents the stress increment, ε∆  is the strain increment and D  is the tangent 
constitutive matrix. 

In smeared crack models the total incremental strain of the cracked material is decomposed into 
an incremental strain vector of the crack, crε∆ , and an incremental strain vector of the uncracked 

concrete between the cracks, coε∆  [7]. 
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co crε ε ε∆ = ∆ + ∆  (2)

For the three-dimensional case, the incremental local crack strain vector, crε∆ , is defined by 

{ }1 2
, ,

Tcr cr cr cr
n t tε ε γ γ∆ = ∆ ∆ ∆  (3)

and, in the global coordinate system, by 

{ }1 2 3 23 31 12, , , , ,
Tcr cr cr cr cr cr crε ε ε ε γ γ γ∆ = ∆ ∆ ∆ ∆ ∆ ∆  (4)

Eq. (5) represents the relation between crε∆  and crε∆  

Tcr cr crTε ε⎡ ⎤∆ = ∆⎣ ⎦  (5)

where crT  is the transformation matrix (see Figure 1) 

2 2 2
11 12 13 12 13 11 13 11 12

11 21 12 22 13 23 12 23 13 22 11 23 13 21 11 22 12 21

11 31 12 32 13 33 13 32 12 33 13 31 11 33 12 31 11 32

2 2 2
cr

a a a a a a a a a
T a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a

⎡ ⎤
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 (6)

The components 11a , 12a  and 13a  form a vector that follows the direction of the n local axis; 21a , 

22a  and 23a  form a vector that defines the t1 local axis; 31a , 32a  and 33a  form a vector that defines 

the t2 local axis. All these vectors are defined in the global coordinate system. 
According to the classical fracture mechanics, and for the case of a plate, three different types of 

crack modes can be considered. The crack opening mode (mode I); the shearing mode 
(mode II - in-plane shear) and the tearing fracture mode (mode III - out-of-plane shear). For the case 
of general solids, the distinction between mode II and mode III can be dropped [8]. For this reason, in 
the present model mode II and mode III are designated as sliding modes in 1̂t  and 2̂t  direction, 
respectively. 

The local incremental stress vector, crσ∆ , can be defined by 

{ }1 2
, ,

Tcr cr cr cr
n t tσ σ τ τ∆ = ∆ ∆ ∆  (7)

where cr
nσ∆  is the mode I incremental crack normal stress, 

1

cr
tτ∆  is the sliding mode incremental 

crack shear stress in 1̂t  direction and 
2

cr
tτ∆  is the sliding mode incremental crack shear stress in 2̂t  

direction. 
Figure 1 represents the crack stress components in the local coordinate system of the crack and 

the corresponding displacements: the opening displacement, w , the sliding displacement in 1̂t  

direction, 1s , and the sliding displacement in 2̂t  direction, 2s . 
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Figure 1. Crack stress components, displacements and local coordinate system of the crack. 

 
In the global coordinate system the incremental stress components are 

{ }1 2 3 23 31 12, , , , ,
T

σ σ σ σ τ τ τ∆ = ∆ ∆ ∆ ∆ ∆ ∆  (8)

The relation between σ∆  and crσ∆  is 

crcr Tσ σ∆ = ∆  (9)

Assuming a linear elastic behavior for the concrete between cracks, the relation between coε∆  

and σ∆  is given by 
co coDσ ε∆ = ∆  (10)

with 

( )( )

( )
( )

( )

1 0 0 0
1 0 0 0

1 0 0 0
1 20 0 0 0 0

21 1 2
1 20 0 0 0 0

2
1 20 0 0 0 0

2

co ED

ν ν ν
ν ν ν
ν ν ν

ν

ν ν
ν

ν

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥+ − ⎢ ⎥−⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (11)

being E  the Young’s modulus and ν  the Poisson’s ratio of the undamaged concrete. 
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In the crack zone, the relationship between crε∆  and crσ∆  is given by 

cr crcr Dσ ε∆ = ∆  (12)

where 

1

2

0 0
0 0

0 0

cr
n

cr cr
t

cr
t

D
D D

D

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (13)

is the crack constitutive matrix. 
Combining equations (1)-(13) and using the multi-fixed smeared crack concept [9], the following 

constitutive law for the cracked concrete can be obtained [7] 

1

ˆ ˆ ˆ ˆ ˆ
T Tcr cr cr cr crco co co coD D T D T D T T Dσ ε

−⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤∆ = − + ∆⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
 (14)

which is equivalent to 
crcoDσ ε∆ = ∆  (15)

where crcoD  is the following constitutive matrix for the cracked concrete 

1

ˆ ˆ ˆ ˆ ˆ
T Tcr cr cr cr crco co co coD D T D T D T T D

−
⎛ ⎞⎡ ⎤ ⎡ ⎤− +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (16)

In this equation, ˆ cr
D  and ˆ cr

T  take into account the assembly of multi-directional cracks and are 
defined by 

1

2

0 ... 0

0 ... 0ˆ
... ... ... ...

0 0 ...
cr

cr

cr
cr

cr
n

D

D
D

D

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (17)

and 

{ }1 2
ˆ ...

cr

Tcr cr cr cr
nT T T T=  (18)

In equations (17) and (18), cr
iD  and cr

iT  correspond to the crack constitutive matrix and to the 
crack transformation matrix of the i-th crack, respectively. 

In Eq. (13), cr
nD , 

1

cr
tD and 

2

cr
tD  represent, respectively, the opening fracture mode stiffness 

modulus, the sliding mode stiffness modulus in the 1̂t  direction and the sliding mode stiffness modulus 
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in the 2̂t  direction. The fracture mode I modulus, cr
nD , is defined in Figure 2, where iα  and iξ  are 

the parameters that define the shape of the crack normal stress vs. crack normal strain diagram 
( cr cr

1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr
n nα σ σ= , 1 ,2 ,/cr cr

n n ultξ ε ε=  and 2 ,3 ,/cr cr
n n ultξ ε ε= ). The ultimate crack normal 

strain, ,
cr
n uε , depends on the iα  and iξ  parameters, on the fracture energy, ,f nG , on the tensile 

strength, ( ,1
cr

ct nf σ= ), and on the crack band width, bl  [7], 

f ,ncr
n,u

1 1 2 2 1 2 ct b

G2
f l

ε
ξ α ξ α ξ α

= ⋅
+ − +

 (19)

The sliding fracture mode modulus, 
1

cr
tD or 

2

cr
tD , can be obtained with, 

1 2 1
cr cr
t t cD D Gβ

β
= =

−
 (20)

where cG  is the concrete elastic shear modulus and β  is the shear retention factor, defined as a 

constant value or as a function of the current crack normal strain, cr
nε , and of the ultimate crack 

normal strain, ,
cr
n ultε  (see Eq. (21)). When a linear decrease of β  with the increase of cr

nε  is assumed, 

then 1 1p = . Larger values of the exponent 1p  correspond to a faster decrease of the parameter 

β  [7]. 

1

,

1
p

cr
n

cr
n ult

εβ
ε

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (21)

To improve the accuracy of the simulation of structures failing in shear, an alternative softening 
constitutive law [10] was included to model the crack shear stress transfer in 1̂t  and 2̂t  directions 
(see Figure 3). 

For each crack shear component, the crack peak shear strain is obtained using the crack shear 
strength, ,

cr
t pτ , and the crack shear modulus obtained from Eq. (20) with a constant shear retention 

factor. 

1 2

,
, ,

,1

cr
t pcr cr

t p t p cr
tD

τ
γ γ= =  (22)

The ultimate crack shear strain in each sliding direction depends on the crack shear strength, ,
cr
t pτ , 

on the shear fracture energy, ,f sG , and on  the crack band-width, bl , as follows 

1 2

,
, ,

2 f scr cr
t u t u cr

p b

G
l

γ γ
τ

= =  (23)
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Figure 2. Tri-linear stress-strain diagram. Figure 3. Generic crack shear stress and crack shear 

strain diagram and the adopted shear crack 
statuses. 

 
In the present approach it is assumed that the crack band width used for assuring mesh 

independence when modeling fracture mode I can also be used to define the dissipated energy in the 
shear fracture process. 

A simple Rankine criterion is used to detect crack initiation. When the maximum principal tensile 
stress exceeds the tensile strength at an integration point (IP) of a finite element, the material 
contained in its influence volume changes from uncracked to cracked state. The crack surface is 
considered to be normal to the direction of the maximum principal stress. The crack normal tensile 
stress follows the softening branches of the tri-linear diagram of Figure 2, thus defining the fracture 
mode I modulus, cr

nD . When a shear softening diagram is used, the crack shear stresses and the 

sliding moduli of the fracture modes, 
1

cr
tD  and 

2

cr
tD , are obtained from the diagram represented in 

Figure 3. Each sliding mode follows an independent shear softening diagram. The shear softening 
diagram starts at the origin because, according to the above described criterion, when a crack initiates 
the shear stress across the crack is zero. As a consequence of the rotation of the principal axes, 
shear stresses can develop across the surfaces of the crack [10]. The crack shear stress increases 
linearly until the crack shear strength is reached (first branch of the shear crack diagram), followed by 
a decrease in shear stress. The second branch (softening branch) is used afterwards to evaluate the 
shear stress and the sliding fracture modes moduli. 

As a consequence of the formation of other cracks in the neighborhood of existing cracks, these 
existing cracks can close or reopen. The model must take into account this change of crack status. 
The multi-fixed 2D smeared crack model [7] takes into account these crack status modifications. In the 
present 3D model a similar approach is used for the opening mode I and for both sliding modes. An 
eventual coupling between the normal and shear modes was not considered. So a crack can, for 
example, unload in mode I, soften in sliding mode in 1̂t  direction and reload in sliding mode in 2̂t  
direction. For this reason, the model treats separately the normal crack status, the shear crack status 
in 1̂t  direction and the shear crack status in 2̂t  direction. For the sliding modes the shear crack 
statuses are shown in Figure 3. A secant approach is used for the unloading/reloading behavior, as 
shown in Figure 2 and Figure 3. 
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3. MODEL APPRAISAL 
The performance of the proposed constitutive model is assessed by simulating the behavior 

observed in a punching test with a lightweight panel prototype of SFRSCC. The test layout and the 
test setup are represented in Figure 4. The details about the experimental program can be found 
elsewhere [6]. The finite element model, the load and the support conditions used in the numerical 
simulation of the punching test are shown in Figure 5. Only one quarter of the panel is used in the 
simulation due to double symmetry. Serendipity 20 noded solid elements with 2×2×3 Gauss-Legendre 
integration scheme are used (3 integration points in the panel orthogonal direction). Three solid 
elements are used along the thickness of 110 mm, while in the lightweight zone (shaded elements in 
Figure 5) one solid element is used along the thickness. The dashed line represents the support of 
the panel. 
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Figure 4. (a) Test panel prototype for the punching resistance and (b) test setup (dimensions in 
mm). 
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The values of the parameters of the constitutive model used in the simulation of the punching test 
are listed in Table 1. Two numerical simulations were carried out. In the former, the shear stress 
transfer in both sliding modes is simulated according to equations (20) and (21) with p1=2. In the latter, 
the crack shear stress vs. crack shear strain diagram represented in Figure 3 is used to model both 
shear sliding modes. In both simulations the values of the parameters to model the fracture mode I 
were obtained from inverse analysis, whose strategy is described in another publication [11]. 

 
 

Table 1. Values of the parameters of the constitutive model used in the simulation of the punching 
test. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 231000.0 N mmcE =  

Compressive strength 252.0 N mmcf =  

Tri-linear tension softening diagram of 
SFRSCC 

23.5 N mmctf = ; , 4.3 N mmf nG = ;  

1 0.009ξ = ; 1 0.5α = ; 2 0.15ξ = ; 2 0.59α =  

Parameter defining the mode I fracture 
energy available to the new crack 2 2p =  

Softening crack shear stress-strain 
diagram 

2
, 2.0 N mmcr

t pτ = ; , 5.0 N mmf sG = ; 0.5β =  

Crack band-width Cube root of the volume of the integration point 

Threshold angle 30ºthα =  
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Figure 6. Relationship between the force and the deflection at the center of the test panel. 
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From Figure 6 it is observed that, in the experimental test, at a deflection of about 1.2 mm of the 
panel central point, the panel load carrying capacity was almost retained up to a deflection of about 
3 mm, after that an abrupt load decay occurred due to the formation of a shear failure surface, typical 
of a punching rupture. However, using the concept of shear retention factor, the model predicted an 
increase of the panel load carrying capacity with the increase of the panel deflection. According to this 
approach, the shear stresses in 1̂t  and 2̂t  sliding directions (

1

cr
tτ ,

2

cr
tτ ) increase with the increase of the 

corresponding shear strains (
1

cr
tγ ,

2

cr
tγ ). Only after the mode I fracture energy has been exhausted 

( ,
cr cr
n n uε ε≥ , see Figure 2), both crack shear stress components become null. However, for this type of 

problem, where the crack shear constitutive components are mandatory, mainly after a certain 
deflection, the formulation of these components should allow that the shear stress components 
decrease with the increase of the crack opening, which requires the use of a shear softening diagram, 
similar to that represented in Figure 3. In fact, the second simulation, which is based on this approach, 
captured the plateau registered experimentally (see Figure 6), since the parameters of this diagram 
were evaluated, by back-fitting analysis, in order to reproduce this phase of the panel response, as 
much as possible. However, the abrupt load decay observed in the experimental test, at a deflection 
of about 3 mm, was not captured by this second approach, since the numerical simulation predicted a 
continuous, but smooth, degradation of the panel load carrying capacity. It is verified that a decrease 
of ,f sG  causes a decrease on the panel load carrying capacity, mainly in its structural softening 
phase, and the abrupt load decay is still not captured. It appears that more sophisticated shear crack 
softening diagrams are necessary for capturing abrupt crack shear stress decays, which is an 
undergoing research. 

4. CONCLUSIONS 
In the present work a multi-fixed smeared 3D crack model is proposed. The developed model is 

based on the finite element method and was implemented in the FEMIX computer code. In an attempt 
to simulate the shear strain gradient that occurs in punching tests, a shear softening diagram was 
proposed to determine both crack shear stress components from the corresponding crack shear 
strains. The crack shear stress transfer can also be simulated using the concept of shear retention 
factor, which assumes a unitary value at crack initiation and a null value when the mode I fracture 
energy is exhausted. 

The performance of the model is appraised by using the results obtained in a punching test with a 
lightweight panel prototype of steel fiber reinforced self-compacting concrete. 

Two simulations are discussed: one using the concept of shear retention factor and the other using 
a softening diagram to model both crack shear components. The former simulation cannot reproduce 
the plateau and the load decay registered in the experimental test, in terms of applied load vs. 
deflection of the panel central point. In fact, the load increases with the increase of the panel 
deflection. The simulation based on the use of a softening diagram to model the shear crack 
components captures the panel load carrying capacity, but the load decay registered experimentally, 
typical of structures failing in punching, is not reproduced numerically. More sophisticated shear 
softening diagrams are being explored in order to improve the capabilities of the model developed in 
the context of the present research program. 
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