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ABSTRACT

The current maximum operating speed of trains on high-speed lines is 350 km/h and the maximum
speed of 574.8 km/h was reached by a special TGV train in tests. Due to the increase of the train speed,
taking into account the vehicle-structure interaction in the design process is essential to guarantee the
serviceability of the bridge and the stability and running safety of the trains. Since in the design project,
several trains running at tens of different speeds may have to be considered, resulting in hundreds of
dynamic analyses, the efficiency of the methodology used is very important.

This article presents an accurate, efficient and robust computational procedure, referred to as the
direct method, that can be used to analyse the nonlinear vehicle-structure interaction. The methods
described in the literature and the currently available commercial software do not satisfy all the mentioned
requirements. The direct method can be used in two or three dimensional problems and the subsystems
that model the structure and vehicles may have any degree of complexity. The proposed methodology is
implemented in MATLAB. The vehicles and structure are modelled with ANSYS, being the structural
matrices subsequently imported by MATLAB.

The presented method establishes directly the equilibrium of the forces acting on the contact

interface. The governing equilibrium equations of the vehicle and structure are complemented with
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additional constraint equations that relate the displacements of the nodes of the vehicle with the
corresponding nodal displacements of the structure. These equations form a single system, with
displacements and contact forces as unknowns, that is solved directly. The main advantage of establishing
the direct equilibrium of forces, when compared with variational formulations, such as the Lagrange
multiplier method, is a better understanding of the physical meaning of the equations. This is particularly
important in complex problems such as the vehicle-structure interaction.

Due to the nonlinear nature of contact, an incremental formulation based on the Newton's method is
adopted. A search algorithm is used to detect which elements are in contact, being the constraints imposed
when contact occurs. In the normal direction the contact is modelled as a unilateral constraint problem and
in the tangential direction frictionless sliding is allowed. A thorough understanding of the behaviour of the
contact interface is essential. A nonlinear spring is used to model the normal contact, being the contact
stiffness derived using the Hertz theory. Generally, a linearized value of the stiffness can be determined by
considering the force-displacement relationship around the static wheel load. The influence of this
linearization is studied in the present article.

The dynamic behaviour of a railway viaduct under the passage of the TGV double train is evaluated.
Three-dimensional models are used and special attention is given to the viaduct and train dynamics. The
service limit states, such as the riding comfort of the train, and the ultimate limit states, such as the track
stability and the running safety of the vehicle are analysed. Finally, the fulfilment of some railway code

requirements when considering trains travelling at high speeds and critical irregularities is investigated.

Keywords: vehicle-structure interaction, wheel-rail contact, high-speed train, bridges, nonlinear analysis



Abstract

This article presents an accurate, efficient arablst algorithm to analyse the
nonlinear vertical vehicle-structure interactiomeTgoverning equilibrium equations
of the vehicle and structure are complemented waatitional constraint equations
that relate the displacements of the vehicle withdorresponding displacements of
the structure. These equations form a single sysaeth displacements and contact
forces as unknowns, that is solved using an opédchldock factorization algorithm.
Due to the nonlinear nature of contact, an incraaleiormulation based on the
Newton method is adopted. The track and structuee naodelled using finite
elements to take into account all the significaatodnations. In the numerical
example presented, the passage of the KHST ovailveay viaduct is analysed,
being the accuracy and computational efficiencythef proposed method clearly
demonstrated.

Keywords:. vehicle-structure interaction, wheel-rail contdgh speed train.

1 Introduction

A vehicle-structure interaction problem is consatdy more complex than a typical
structural dynamics problem due to the relative emoent between the two
subsystems and the associated constraint equaéilatimg the displacements of the
vehicle and structure. In a significant number wfdges available in the literature
about the vehicle-structure interaction, the strreetand vehicles are modelled as
rigid multibody systems [1, 2]. Other authors, sashAntolin et al. [3] and Tanabe
et al. [4], proposed formulations that additionddke into account the deformation
of the structure. Neves et al. [5] modelled theisles and structure using finite
elements, thus considering the deformation of lsgtems.

When the vehicle and structure are considered sm@e system, the forces
acting on the contact interface are internal far&usce the vehicle moves relatively



to the structure, to avoid modifying the finite ralent mesh at each time step, Yang
et al. [6] proposed a new contact element based oondensation technique that
eliminates the degrees of freedom at the contaetrfate. However, since the

matrices of these elements depend on the posifidheocontact points, the global

stiffness matrix is time-dependent and must be tgodand factorized at each time
step. This procedure may demand a considerable watignal effort.

In the methods described in [7-10] the contactdsrare considered explicitly but
are not treated as unknowns of the governing dxjuiin equations. In those works,
an iterative procedure is used to ensure the cogfletween the two subsystems.
These methods may exhibit a slow rate of convergeespecially when unilateral
contact is considered or a large number of comgartts are required. To overcome
these limitations, Neves et al. [5] developed awoueate, efficient and robust
algorithm to analyse the vertical vehicle-structimeeraction, referred to as the
direct method, in which the governing equilibriumguations of the vehicle and
structure are complemented with additional constraquations that relate the
displacements of the contact nodes of the vehidth the corresponding nodal
displacements of the structure, with no separateing allowed. These equations
form a single system, with displacements and corftaces as unknowns, that is
solved directly using an optimized block factoriaatalgorithm.

In the present work an incremental formulation sedito take into account the
nonlinear nature of contact. The time integratisrpérformed using the method
since it provides numerical dissipation in the leighmodes while maintaining
second-order accuracy [11]. The proposed methoglolzgy implemented in
MATLAB [12]. The vehicles and structure are modeéllith ANSYS [13], being
their structural matrices imported by MATLAB.

2 Contact and target elements

A two-dimensional node-to-segment contact elementused in the present
formulation (see Fig. 1).
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Figure 1: Contact pair concept.

In the direct method described in [5] no separai®mllowed. In the present
formulation a search algorithm is used to detedtkvklements are in contact, being
the constraints imposed when contact occurs. Smtee present formulation only
the frictionless contact is considered, the condtejuations are purely geometrical



and relate the displacements of the contact nodke thie displacements of the
corresponding target element.

Figure 2 shows the two-dimensional node-to-segmeoitact element
implemented in the present formulation and thellooardinate systen¥{, &, &) of
the contact pair. Thé, axis always points towards the contact node, b#irgwo
elements separated by an initial gaprhe forces acting at the contact interface are
denoted byX and the superscripts CE and TE indicate contatttamget elements,
respectively.

CE
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Figure 2: Node-to-segment contact element: (aemend (b) displacements at the
contact interface.

According to Newton'’s third law, the forces actiagthe contact interface must
be of equal magnitude and opposite direction, i.e.,

XCE + XTE - O (1)

The displacement vector of an arbitrary point iire by two translationsy,

and Vv, , and a rotationd; about thes axis. Since this type of contact element
neglects the tangential forces and moments tratessthgicross the contact interface,
the contact constraint equations only relate tipldcement/, of the contact node
with the corresponding displacement of the auxiligointk. Each constraint
equation is defined in the local coordinate systérthe contact pair and comprises
the non-penetration condition for the normal di@tt These equations are given by

vE-VE>—g+r 2)



wherer are the irregularities of the contact interfacke Daps are always positive
and a positive irregularity implies an increasethe distance between the contact
and target elements (see Fig. 2).

3 Equations of motion

3.1 Forceequilibrium

The a method is an implicit time integration scheme tisagienerally accurate and
stable [11]. Assuming that the applied loads arferdeation-independent and that
the nodal point forces corresponding to the inteebement stresses may depend
nonlinearly on the nodal point displacements, tlggiations of motion of the
vehicle-structure system given in [5] may be reteritin the form

M & +C[1+o)d™ —ad] +[+a)R™™ —a R =(l+a) F*™ —aF'  (3)

whereM is the mass matrix; is the viscous damping matriR, are the nodal forces
corresponding to the internal element stresBeare the externally applied nodal
loads anda are the nodal displacements. The supersctipisd t+ At indicate the
previous and current time steps, respectively.

To solve Eq. (3) let thE type degrees of freedom (d.o.f.) represent the ricalal
d.o.f., whose values are unknown, and letRhgpe d.o.f. represent the prescribed
nodal d.o.f., whose values are known. Thus, the \@tor can be expressed as

F. =P, +DE X +DI% X™ @
F, =P, +D% X% +DJ% X" +S ©)

where P corresponds to the externally applied nodal loadd S are the support
reactions. Each matri® relates the contact forces, defined in the locardinate
system of the respective contact pair, with theahddrces defined in the global
coordinate system (see Fig. 2).

Substituting Eq. (1) into Egs. (4) and (5) leads to

Fr =P +D X (6)
Fo =P, +Dp X+S (7)
where
X =X* (8)
Dex =Dix ~Di ©)



Dex = Dg>E< - DIE( (10)

Substituting Egs. (6) and (7) into Eq. (3), andiganing intoF andP type d.o.f.,
gives

M - at':m + (1+a)CFF atF+At + (1+0()Rt|:+m _ (1+Oc) Dtl:xm XAt = EF (11)
St+At = _P;+At _ Dt;XAt Xt+At

L _. | |
b M A oM d e e e RE® (12)

+1+L S} +P|t3 +Dth X! ~Cpr atF ~Cpp atP _RIP]
a

where

Fr =(l+a)Pf™ —aPL —a Di, X' =M ., &5™

~(+a)Cpp ai™ +alC,. &L +Cpp 8L ] +aRL 13)
3.2 Incremental formulation for nonlinear analysis
Since the present problem is nonlinear, Eq. (1igwgitten in the form
wlat, x#2)=0 (14)
where y is the residual force vector, given by
plar® X)) = Fr =M, 85— (1+0)C,p & - (14 a)RY™ as)

+ (1+a) DtF+xAt xt+At

The nodal velocities and accelerations depend emtdal displacements and,
for this reason, are not independent unknownshéatmethod the velocity and
acceleration at the current time step are appraeidwaith

P :L(aum —a‘)+(1—lJ al + At (1_L] 4t (16)
pAt p 2p
qoo =L (e _g) L g _( 1 _1j " 17)
BA BA 28

where f andy are parameters that control the stability and mmguof the method.



An iterative scheme based on the Newton methodigldked to solve Eq. (14).
Assuming that the solution at théh Newton iteration is already known and
substituting Eqgs. (16) and (17) into Eq. (14), k&

‘Il(at':At,i ’ Xt+At,i)

' 'ﬁ—AltzMFF-(““%CFF'(““)k—aiz “(a?“'“-a?“") as)
E alrati

+ (1+ a) DtF+xAt,i (Xt+At,i+l _ Yt ) -0

Equation (18) can be rewritten as

KFF AaiF+1 _ (1+ a) DtFJ;(At,i Axi+1 - w(a?m ' Xt+m,i ) (19)
being
K =1 y R
Kee = ,BAtz Mg + (1+ OC)M Cee + (1+ OC) ['a at;Zt ” ] (20)
AaiF+1 - atF+At,i+1 _atF+At,i (21)
Axi+1 - Xt+At i+l _ Xt+At,i (22)
In matrix notation, Eq. (19) can be expressed as
- _ Aai+1 o o
[K FF DFX]{AXTH} = ‘I’(atp D G ) (23)
with
[_)FX = _(l'l' OC) D:;Xm’i (24)

After the evaluation of the solution at iteratiol, the current residual force
vector is calculated using Eq. (15). The iteratischeme continues until the
following condition is fulfilled

t+Ati+1 t+Ati+1
X )

‘I’(aF

H pua <& (25)

being £ a specified tolerance.



4  Contact constraint equations
When contact occurs the non-penetration conditivergby Eq. (2) is fulfilled if
vE=VvE =—g+r (26)
The displacements of the contact nodes (see Faye2jiven by
VEE = HISE a4 o @)
where each transformation matrk transforms the displacements of the contact
nodes from the global coordinate system to thelloc@rdinate system of the

contact pair. The displacements of the auxiliarynfof the target elements are
given by

where each transformation mattik relates the nodal displacements of the target

elements, defined in the global coordinate systesth the displacements of the

auxiliary points defined in the local coordinatstgyn of each contact pair.
Substituting Eqgs. (27) and (28) into Eq. (26) yseld

H e a-tFJrAt'iﬁle_g"'r ~Hye atF:rAt (29)

where
Hye = HS(E _H;I;E: (30)
Hye :H(>:<IFE>_HI<E> (31)

Substituting Eq. (21) into Eq. (29) leads to
Hye Dol =—g+r —H, as™ —He a™ (32)
Multiplying Eq. (32) by—(1+a) gives
Hye 82" =g (33)
where
Hy =—(1+a)H,, (34)

and



g= —(1+a) (—g+r —Hyp atl:m —Hye atlzmt'i) (35)

Equations (23) and (33) can be expressed in mianw leading to the following
system of equations

|:KFF Bpx} [ Aai;l} _ |:\I’(atF+At,i X )} )

ﬁXF 0 AX™ g

5 Dynamic analysisof arailway viaduct

In order to validate the accuracy and efficiencytlvé proposed methodology a
numerical example consisting of the Alverca railwapduct subjected to the
passage of the Korean high-speed train (KHST) éslu§he results calculated using
the direct method are compared with those obtamiédl the commercial software
ANSYS [13]. In the analysis performed with the safte ANSYS the Lagrange
multiplier method is used.

5.1 Numerical model of the viaduct

The Alverca railway viaduct (see Fig. 3) is locatatd the km +18.676 of the
Northern Line of the Portuguese railway networke Miaduct has a total length of
1091 m.

Figure 3: Aerial view of the viaduct.

The cross-section of the spans of the viaduct @vshin Fig. 4. Each span is
composed of a prefabricated U-shaped prestressed Bed an upper slab casted in
situ, which form a single-cell box-girder deck. Thellast retaining walls are
monolithically connected to the upper slab of tkeld
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Figure 4: Cross-section of the viaduct.

Since the viaduct has several spans, the threendioveal modelling of the
complete viaduct using a personal computer wouldrpacticable due to the high
computational cost. Therefore, only the three spafjacent to the North abutment
are modelled using the software ANSYS (see FigAB)extension of the track with
a length of 15 m was modelled to simulate the camty of the track over the
adjacent embankment. The U-shaped beams, the sigpsrand the ballast retaining
walls are modelled with shell elements, and théabtalayer and sleepers with solid
elements. Spring elements are used to model thgpads and the supports of the
spans, and the rails are modelled using beam elsmBmtake into account the non-
structural elements, such as safeguards and ed@msbeadditional masses are
considered. The model has 233292 unconstrained. ditie calibration and
experimental validation of the numerical model bé tviaduct was performed by
Malveiroet al. [15].

SO

Figure 5: Numerical model of the first three spahthe viaduct.



The first four vertical vibration modes of the wvied and the first torsional
vibration mode are represented in Fig. 6 along with corresponding natural
frequencies.

f=6.58 Hz f=6.63 Hz

f=9.20 Hz f 11.82 Hz

f=18.36 Hz

Figure 6: Global vibration modes and natural fregues of the viaduct.

5.2 Numerical model of thetrain

The model of the KHST used in the present artisleamposed of two power cars
on both ends connected to 16 passenger cars bysnoéadwo motorized trailers.
The train has a total of 23 bogies and 46 axles)dothe axle load at each wheelset
of about 17 t. The total length between the firsl &ast axles is 380.15 m.

The carbody, bogie frame and wheelset are consldeserigid bodies, and are
modelled using point masses and rigid beam eleméfite suspensions are
modelled using spring-dampers in the three direstioThe model has 8374
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unconstrained d.o.f. The mechanical and geometpicgerties of the vehicles are

described in [16].
The numerical models of the power cars, motorizadets and passenger cars
are represented in Fig. 7, and the model of theelsag depicted in more detail in

Fig. 8.

(@)

(b)

(©)

Figure 7: Numerical models of the train cars: (@vpr car, (b) motorized trailer and
(c) passenger car.
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Figure 8: Numerical model of the bogie.

The first global vibration mode shapes and corredpw frequencies of the train
are represented in Fig. 9.

f=0.707 Hz

W

f=0.712 Hz

Figure 9: Global vibration modes and natural fretues of the train.

5.3 Dynamic analysis

Since the total length between the first and ladesaof the train is 380.15 m,

modelling the complete track would greatly incretis® computational cost of the
analyses. Therefore, the train is initially suppdrby rigid beams (see Fig. 10) and
the initial extension of the track is modelled asritically damped system in order
to damp out the sudden applied load of the traiemihleaves the rigid beams.

12



Figure 10: Initial rigid path supporting the train.

Since only the first three spans of the viaduct aredelled, the boundary
conditions of the third span are not correctly tak&o account and therefore only
the passage of the train over the first two spananalysed. The train travels at a
constant speed df20m/s. A time step 0f25x10™”s is used and the total number
of time steps is 2000. The following parameters tfag o method are considered:
a =-005, =9/20 and y =902540000.

The vertical accelerations at the midpoint of teeosid span, obtained with both
the direct method and ANSYS, are plotted in Fig. 11

12 T T T T T T

— Direct method
— — — ANSYS
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1
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Figure 11: Vertical acceleration at the midpointte second span.
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The vertical displacements of the first wheelsettlod train are compared in
Fig. 12. Finally, the accelerations of the carboéiyhe first power car are plotted in

Fig.13.
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Figure 12: Vertical displacements of the first wiseeof the train.
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Figure 13: Vertical accelerations of the carbodyhef first power car.

The results obtained with the direct method and ¢beesponding ANSYS
solutions obtained using the classical Lagrangdiptielr method show an excellent

agreement.

All the calculations have been performed using akatation with an Intel Xeon
E5620 dual core processor running at 2.40 GHz.aorore accurate comparison,
the calculations in ANSYS and MATLAB have been perfed using a single
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execution thread. The elapsed time is 34.3 hosirgJLANSYS and 5.7 hours using
the direct method with the optimized block factatian algorithm, which is about
six times faster.

6 Conclusions

An accurate, efficient and robust method for analys the nonlinear
vehicle-structure interaction is presented. Theadimethod is used to formulate the
governing equilibrium equations and impose the tairg equations that relate the
displacements of the contact node with the dispierds of the corresponding
target element. The accuracy of the method has beefirmed using a numerical
example consisting of the passage of the KHST awailway viaduct, in which the
results obtained with the direct method and ANS¥&nsan excellent agreement.

The proposed method uses an optimized block faettion algorithm to solve
the system of linear equations. The performed nigaleanalyses demonstrate the
efficiency of the developed algorithm, since thécations performed using the
direct method are six times faster than the calmria performed with ANSYS.

Since in the present method the tangential creege$oacting at the interface are
not considered, the lateral vehicle-structure atgon cannot be taken into account.
To determine these forces, the material and ge@n@toperties of the wheel and
rail, and also the relative velocity between the tvodies at the contact point have
to be considered. The extension of the presentadetih three-dimensional contact
problems is under development and will be presemadforthcoming publication.
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